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* Executive Summary

The major progress of note for this period is as follows:

1. Regular Expression Compilation. The overall goal of the project is to develop silicon compilers
that produce output comparable to hand designs. A compiler for translating a mixture of state
machine definition and regular expressions into networks of PLA's or logic is working. In a
number of tests the area required by the output was found to be no more than 50% over that of a
hand design; in some cases the results are far closer than that.

2. MIPS: A VLSI Processor. MIPS (Microprocessor without Interlock between Pipe Stages) is a
project to develop a high speed (> I MIP) single chip 32-bit microprocessor. The final test chips
for the MIPS processor design were completed and will be submitted for fabrication on the
November 82 MOSIS fabrication run.

3. Relative Layout Tools. Yale (Yet Another Layout Editor) is a symbolic layout editor that will run
on the SUN and make the capabilities of SILT available in a graphics front-end. The first version
of Yale was completed and documented.

4. Graphics Architectures. The IRIS is a high-resolution, high-performance, color-graphics
workstation. It incorporates the Geometry Engine and utilizes the SUN processoir board. An
IRIS prootype was designed and demonstration software was developed.

5. Computer supported FTL launched. We have completed the planning and exploratory stages of a
project to provide extensive automation and computer support for the Fast Turnaround
Laboratory. This ambitious interdisciplinary project (involving researchers from Computer
Systems, Integrated Circuits, and Solid State laboratories) will provide control, documentation,
training, portability, repeatability, and efficiency in the area of IC fabrication processes.

6. Palladio: An IC Designer's Assistant The Palladio system is a framework for experimentation
with circuit design methodologies, knowledge-based expert system design aids and symbolic
circuit simulation concepts. The major goal of the project is to develop an intelligent and
integrated circuit design environment to assist in the full design, test and debug design cycle.
During the past six months Palladio's basic system structure was completed and several prototypic
system components were implemented.

7. Electron Beam Lithography. The Stanford MEBES machine has passed all on-site acceptance
tests, including those relating to direct writing and registration accuracy. The MEBES machine is
currently being used to fabricate masks for the Geometry Engine, several MIPS test chips, and the
two-chip Medium ''ester.

8. 2 Micron CHOS. Test devices using Stanford's 2 tim CMOS process have been fabricated. This
process features a 4 pim n-well and a 400 Angstrom oxide thickness. Two additional "tune-up"
runs are in progress at the moment. The mask set for this run was written at Perkin-Elmer/ETEC
before our machine passed acceptance, but plates were developed and eChed at Stanford.

9. Wafer Fabrication Facility. The following pieces of equipment have been installed and
characterized and are now being used in the fabrication of NMOS/CMOS wafers: Drytek 100
plasma etcher (Poly-Si and Si N ), Tylan I.PCVI) (Voly-Si. Si N and 1T SiOT MT! Omni-
Chuck resist processing: IPC E-80 plasma etcher (Si0 2); and Ultratech 900 1:1 projection aligner.
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10. Tri-Level Resist Technology. A tri-lcvel resist technology designed for direct-write E-beam
lithography has been developed. The three layers are: 1.2 ptm "super-hard-baked" AZ-1470 resist,
500 Angstrom sputtered or plasma-deposited poly-Si, and 0.4 um PBS electron resist. The key
step in this process is the use of 02 reactive ion etching (RIE) to transfer to pattern from the thin
PBS and poly-Si layers to the underlying "planarization" layer of AZ-1470 resist. Resist lines 0.5
um wide separated by 0.5 pm have been produced by the highly anisotropic RIE.

11. Testing for Process Control. A number of test structures have been designed which allow statistical
data to be gathered about many of the parameters affecting fabrication yield including step
coverage, shorts (both level-to-level and on a single level), contact hole integrity, etc. In contrast
to many of the "string" or "meander" structures, these test vehicles are addressable in such a way
as to allow the position information of failures to be monitored.

12. Electrically based layout systen, Lava. A rewritten version of Lava is again running test cases,
including the 10,000-transistor serial memory. It seems stable enough to support further
investigations, e.g., composition of cells and logic-to-sticks conversion.

13. Logic-to-sticks conversion, Dumbo. Dumbo produced its first totally automatic layouts with
reasonable area efficiency, using force-directed placement. Large cells still incur large area
penalties, however.

14. The MEDIUM tester chip set. The MEDIUM tester chip set has been designed, laid out, and
submitted for fabrication, along with some test chips. One of the two main chips has been
partially tested, and it appears to be correct.

0 15. Bulk CAIOS. We have implemented a CMOS design-rule checker based on the polygon package
and distributed it to MrIT and JPL. It was used to check pads, PLAs, and a counter submitted for
fabrication; it has also checked layouts from MIT and Lincoln Labs.
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* Technical Progress

1 Design Description, Analysis, and Synthesis

Yrl Regular Expression Compilation

A system compiling regular expressions into PLA's or logic has been developed. The input language has

been augmented recently to include state declarations when convenient; in the syntax, entering a state looks

similar to the occurrence of an input symbol, while transfer to a state is akin to emitting an output symbol.

The regular expression language is translated to a nondeterministic finite automaton (NFA) language by

one or two different compiler strategies, called "before" and "after." The former tends to minimize the

number of rows of a PLA, while the latter tends to minimize the columns. Neither strategy dominates the

other in tests, so both are made available as options for the user. r( r-, ..... ,-,

The NFA's are compiled into networks of PLA's or Weinberger arrays (via S. Johnson's Igen language).

The PLA's are optimized using CRY [Hemachandra 821. Layout of PLA's is accomplished by PLAGEN, a

routine written in CHISEL [Karplus 821. The latter two facilities are the product of K. Karplus, a Hertz

fellow whose DARPA support consisted of computer services.

Staff. L. Hemachandra, A. Karlin, H. Trickey, J. Ullman

Related Efforts: lgen (Bell Labs), SLIM (Stanford)

References: [Hemachandra 82, Floyd 82, Trickey 82, TrickeyUllman 82, Ullman 82a]

1.2 YALE

Yale (Yet Another Layout Editor) is a symbolic layout editor that will run on the SUN and make the

capabilities of SILT available in a graphics front-end. YALE is presently being implemented on a

combination of the SUN workstation and the VAX. It uses the SUN as an intelligent graphics workstation (no

disc required); thus, this work is being carried out in collaboration with the Network Graphics project at

Stanford. YALE is primarily a graphics interface to SILT, allowing the placement of reference lines

graphically. It also allows textual or graphical specification of constraints and textual specification of

expressions for computation of reference line placement.

.Staff." J. Clark, T. Davis
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Related Efforts: Daedalus and the Data Path Generator (MIT), Caesar (UCB).

References: [Davis, T. and Clark, J. 821

1.3 SLIM

SLIM, Stanford language for Implementing Microcode, was initially implemented during an earlier

contract and presented at the 1981 Caltech VLSI Conference. The goals of SLIM are to describe on-chip

control as microcode, to simulate that microcode using a functional description of the chip components, and

to generate a PLA implementation of the microcode. The initial SLIM implementation has been working

since the end of 1980.

The current work on SLIM concentrates on the design of a state-assignment optimizer. A prototype

optimizer, which saves an average of 15% of the minterms, has been developed. It needs further work to

characterize its theortical properties and to make it more efficient on large PLA's.

Staff. J. Hennessy, L. Adams

Related Efforts: MacPitts (Lincoln Labs), SLANG (UCB) and SLAP (Brown University).

1.4 Palladlo: An IC Designer's Assistant

The Palladio system [Brown 82] is a framework for experimentation with circuit design methodologies,

knowledge-based expert system design aids and symbolic circuit simulation concepts. The major goal of the

project is to develop an intelligent and integrated circuit design environment to assist in the full design, test

and debug cycle. Palladio serves as the focus for the Knowledge-based VLSI Project (KBVLSI project), a

collaborative activity between the Heuristic Programming Project, Stanford University, the VLSI System

Design Area, Xerox Palo Alto Research Center and the Fairchild Laboratory for Artificial Intelligence

Research.

1.4.1 Design Specification Editor

A circuit design process can be viewed as the creation of behavioral and structural specifications of the

circuit. This usually involves a sequence of transformations from abstract specifications of the behavior and

structure to more detailed implementation specifications. Palladio's design editor is an interactive graphics

system for creating and editing circuit specifications at various levels of structural and behavioral detail. For

example. in Palladio the structure of a circuit component can be simultaneously described in terms of gates, fri

terms of switches and in terms of a layout, and the component's behavior can be simultaneously described in

terms of boolcan logic or in terms of node value-strength pairs.
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The level of specification to be used in performing a particular task is currently at the choice of the

designer. We are working on design aids which will automatically select the most appropriate specification

levels for the task at hand, for example, simulation.

During the past six months we have essentially completed the the underlying framework for Palladio's

design editor and the graphical user interface to the editor. The graphical interface uses HILGA [Getting 811.

a high level graphics package for Interlisp-D.

Staff: H. Brown, G. Foyster, P. Gerring.

1.4.2 Design Specification Levels

One of the objectives of our project is to experiment with various circuit design specification levels. In

Palladio a design specification level is primarily represented by structure and/or behavior specification

languages (both graphical and textual) and by a set of composition rules for governing the recursive creation

of composite components from the primitives of the specification language [Stefik 82a]. During the past six

months we have implemented two specification levels.

The Clocked Primitive Switches (CPS) level is a structural specification level which includes both circuit

and gate level specifications. In addition the graphical form of the CPS level can be used to describe a planar

topology for the circuit.

Associated with the the CPS structural level are two behavioral specification levels. One is based on the

usual boolean level of behavioral specification and the other is based on node value-strength pairs [Bryant 81).

The user interface form of both of these behavioral levels is production rules.

Staff. H. Brown, G. Foyster.

The Computational Blocks Abstraction (CBA) specification level is a level at which a designer can specify a

digital system in terms of blocks containing data structures and operations.

Staff. C. Tong.

1.4.3 Design Simulator

During the past six months we have been working on a framework for multiple-level, rule-based simulator.

The simulator is not tied to any particular technology or specification level. The primary idea is to exploit

hierarchical design descriptions to help manage the simulation of complex systems. The simulator framework

0 can be used to perform auto-validation of designs, goal-directed simulation, and symbolic simulation.
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A preliminary version of the simulator framework has been implemented. This implementation was done

in MACLISP using the Meta-level Representation System (MRS) [Genesereth 80]. MRS provides, in

partiular, the simulator's inferencce mechanisms.

Staff." N. Singh (Stanford and Fairchild).

The simulator framework has been interfaced with the CPS specification level in Palladio, and a dynamic,

graphical simulator display has been implemented.

Staff G. Foyster.

1.4.4 Design Transformation

During the past year we have been working on design aids to assist in the transformation of an abstract

design specification to a more detailed implementation. This work has involved research on a model for

design centered around goals, alternative designs and tradeoffs [Tong 82]. This model views design as a

dialectic between goals and design alternatives: goals are established, alternative designs are specified, and

the goals are evaluated with respect to these alternatives and possibly revised in light of the alternatives.

Knowledge of important tradeoffs among goals are used to guide the dialectic.

To support the complex and varying relationships among design entities a design knowledge representation

language, FIRE, has been developed. FIRE is implemented in LOOPS [Bobrow 811.

Staff: C. Tong.

1.4.5 Programming Systems

Most of the Palladio system is implemented in LOOPS. LOOPS is a data and object oriented programming

system integrated with Interlisp. In object oriented programming, behavior is determined by responses of

instances of classes to messages sent between these objects with no direct access to the internal structure of an

object. Data oriented programming is a dual of object oriented programming where behavior can occur as a

side effect of direct access to object state.

During the past six months numerous enhancemens and extensions have been made to LOOPS. In

particular, the capability for doing rule oriented programming has been added to LOOPS [Stefik 82b].

Staff.- D. Bobrow (Xerox), M. Stefik (Xerox).

Some of the project programming has utilized the GLISP compiler system [Novak 82]. During the past six
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0 months GLISP has been extended and made more robust, and a graphics editor based on GLISP object

descriptions has been developed for the Xerox Dl100 Workstation (the Dolphin).

The GLISP language has been extended as an experimental hardware description language. This language

allows hardware data structures suct a-, computer instruction formats to be described and used in a natural

way. The GLISP descriptions are compiled into an intermediate code which is similar to exisiting register

tranfer languages. This intermediate code runs on an interactive simulator using the Dolphin graphics system.

Staff. G. Novak.

1.5 Electrically based layout system, Lava

Lava is an electrically based, general-purpose layout language. Our principal objectives are topological,

rather than geometric, layout description and guaranteed design-rule correctness of layouts. Lava's major

components are a sticks compactor, cell stretching and abutment mechanisms, a router, and a framework to

link them together.

We have rewritten Lava to stabilize it and to incorporate some of the hooks that will be necessary for

further investigations. We have concentrated on a clean implementation of the aspects that we understand

well, removing some of the more ill-conceived mechanisms in the previous implementation. One major

improvement is that much of the technology-specific information is now centralized; while Lava is not

intended to be technology-independent, this technology file makes it possible to change easily parameters of

the nMOS target process,

The result is a sufficiently stable platform for further investigations, for example, a well-conceived

composition level and logic-to-sticks conversion. The rewritten Lava now successfully compiles a large

number of test cases, including (very recently) the serial memory chip described i1• our previous report.

Staff: C. Burns, D. Chapiro, P. Eichenberger, R. Mathews, J. Newkirk, D. Perkins, T. Saxe

Relaied liforts: EARl, (CaTll'ech), CABBAGE (UCB)

1.6 Routing

We have developed a new, 2-dimensional area router, the loop routing scheme (LRS). LRS handles both

rectangular- and doughnut- shaped routing areas. LRS is a promising box router for the custom routing

problem because, like the dogleg channel router, it indicates how much expansion of the routing area is

0 necessary to complete a given routing.
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The difficulty of channel routing problems, and the performance of channel routers, may be measured by
the number of wiring tracks required to complete the routing. Previously, no similar measures existed for
comparing area routers. Such a measure must describe how difficult a given, fixed, area-routing problem is,
since there is no well-defined way to expand the routing area to guarantee completion of the route.

We have developed an appropriate measure of problem difficulty, the Manhattan Area Measure. By using
it to assess the difficulty of routing problems generated using Monte Carlo techniques, we have compared the
performance of LRS to the classic Lee area-routing algorithm. The LRS has vastly superior performance to
the Lee, successfully routing problems that are twice as dense as those that the Lee will complete successfully.

Staff. T. Saxe, L. Smith

Related Effortsv PI project (MIT)

References: [Smith 821

1.7 Logic-to-sticks conversion, Dumbo

This work is aimed at simplifying the layout of random logic. Some amount of glue is inevitable in a
design, but is is painful to lay out and typically does not consume a significant amount of the total area of the
design. Consequently, we are searching for techniques for converting logic, specified as transistors, gates, and
a net list, to stick diagrams for compaction by Lava.

The logic-to-sticks conversion program Dumbo has now produced some layouts of small cells with
respectably small areas completely automatically. For example, a 12-transistor cell was laid out with no area
penalty when compared to the original hand-drawn sticks. Force-directed placement and orientation of
components made this result possible. However, for larger cells we still see penalties of 100-150%.

We are continuing to analyze the sources of inefficiency in Dumbo layouts. As for our custom-chip router
described in our previous report, a series of small 10% efficiencies cumulate to create a large overall area
penalty. We are analyzing these sources of error to try to understand and control them. However, one major
source of inefficiency appears to be the sensitivity of our sticks compactor to small changes in the stick
diagram. While the human designer copes with these vagaries very well, we do not understand them well
enough to permit us to avoid them in automatically generated cells. Nevertheless, we feel we will be able to

make substantial additional progress in this area.

Staff. R. Mathews, 1). Perkins, W. Wolf
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0 Related Efforts: Rulc-based circuits-to-sticks conversion (A. Bell, PARC)

References: [Wolf 82]

2 VLSI Processor Architecture

2.1 MIPS - A High-Speed Single-Chip VLSI Processor

MIPS (Microprocessor without Interlock between Pipe Stages) is a project to develop a high speed () 1

MIP) single-chip 32-bit microprocessor. Like the RISC project at Berkeley, MIPS uses a simplified

instruction set and is a load-store architecture.

The MIPS architecture is summarized in a previous technical progress report and is discussed in several

publications. During this six month period, the major goal of the project was to develop a series of test chips

that would provide a complete test of each major component of the chip individually.

The six test chips contain all the parts needed to implement the complete MIPS processor. Each test chip

also contains additional testing and pin multiplexing hardware. By fully testing the components before

fabricating a complete design, the probability of success on the first run is much higher. This approach also

allows us to characterize the indivdual c,.,mponents and make performance adjustments before the final

fabrication. By designing a single reusable test frame, the individual test chips may be constructed from the

exact pieces of the complete chip with a minimal amount of effort. The final assembly process consists of

merely composing the individual test components to form the complete processor. Lastly, this process offers

an ideal opportunity to test the concept of fast-turnaround foundries. Because progress on the project depends

on receiving and testing the chips prior to completing the final design, reasonable quality, fast-turnaround

fabriction is essential.

The six test chips and their current itatus is as follows:

1. Register File Test.Chip - submitted and tested at both 3 and 4 microns. The 4 micron chips were
finctional, although the yield was <10% (i.e. all parts of the chip worked over 10 die. but no single
die was complctely finctional). '[he 3v fabrication produced no working parts.

2. Instruction Decode Test Chip - tested one out of eight die was completely functional.

3. larrel Shifter Test Chip - preliminary tests from the first fabrication have shown partially working
chips. So far, no definitive problems have been identified.

4. ALU Test Chip - destined for November submission. Currently running fuinctional simulation.
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5. Program Counter Test Chip - version 0 currently in test. Version. 1 in simulation.

6. Master Pipeline Control Test Chip - submitted in October fabrication run. Not returned yet.

Stiol F. lBaskett, J. Burnett, J. Gill, K. Gopinath, T. Gross, J. Hennessy, N. Jouppi, W. Park, S. Przybylski,

C. Rowen, A. Strong.

Related Efforts: RISC (UCB), IBM 801 (IBM Yorktown), Cray-il (Cray Research).

References: [HcnnessyJouppiPrzybylski 82, Gross 82, Hennessy 83]

2.2 Geometry Engine

The Geometry Engine is a high-performance, floating-point computing engine for geometric operations in

21) and 3D computer graphics. Multiple copies of the Geometry Engine provide a parallel computing system

with very high-performance. (5-10 million floating-point operations per second.)

During this period, we obtained a second fabrication of Geometry Engines. This batch provided enough

chips to build a geometry system (10 chips) and a complete prototype. This prototype system, called the IRIS,

is discussed in the next section. The Geometry Engine design is completely functional, although the

performance is less than originally predicted.

Stafj: J. Clark, M. Hannah

References: [Clark 821

2.3 IRIS Workstation

The goal of the IRIS workstation project was to design a high-resolution, color, extra high-performance

graphics workstation that utilized all of the features of the Geometry Engine and was software-compatible

with the SUN 68000 processor (excluding graphics software compatibility). The system consists of

"* A SUN-compatible processor/memory board.

"* A Geometry Engine board (10 Geometry Engines).

"* A Raster Generation Subsystem.

"* A Raster Update Subsystem.

O Th~e IRIS allows the user program to generate display programs that provide for real-time motion of 2D
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and 3D environments, multi-window displays and color lookup table manipulation. To provide for motion

simulation, the system is dynamically configurable to provide either double or single-buffer images. The

system has been in operation since August, 1982, and procedures are underway to replicate copies of the

system for future research at various Stanford Laboratories.

Staff.- K. Akeley, J. Clark, M. Grossman, C. Rhodes

3 Signal Processing Algorithms and Architectures

3.1 Simulation of Musical Instruments

The Digitar chip uses a digital-filter method to synthesize various wavcforms. It c•w:ts of about 3500

transistors, and was designed by writing a SAIL program to generate its layout. Internally, it has a 12-bit

arithmetic unit that add&, subtracts, increments, decrements, and single-bit shifts; it has a 16 by 15-bit shift

register array and a 7 by 21-bit microcode array for controlling the data path. Although primarily designed to

synthesize plucked string sounds, the chip can also produce snare-drum, clarinet, and bassoon timbres. It is

controlled by an 8-bit port and internally decodes the command sequences sent to it by a microprocessor.

The chip requires 4K of external RAM in order to perform its functions, and it addresses this RAM directly.

Support for this project was primarily by the Hertz Foundation, ARPA support has been limited to

computation facilities and a small amount of personnel support.

Staff K. Karplus, A. Strong

4 Testing

4.1 Process Control Test Structures

Work continues on the development of a variety of test structures for use in providing feedback to the

wafer fabrication activities at Stanford. The development of these test structures has paralleled the re-

establishment of the wafer fabrication activities as well as the tighter process control requirements imposed by

the development ofa 2 Atm CMOS.

4.1.1 Defect Density Test Structures

A set of test structures has been developed which allows the extraction of defect densities associated with

step-coverage, contact opening, and shorts which may be encountered at various points in the fabrication

sequence. Although meander patterns, contact strings, etc. provide a means of generating go/no-go statistics
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0 of these failures for a large coverage area, they provide little data as to where the defect actually occurs or

even if a test failed because of one or many defects. The advantage of these types of tests, however, is the fact

that they cover many sample sites and a large silicon area with a single measurement. The test structures that

we are developing attempt to provide a greater degree of localization to better pinpoint the number and

location of defects without totally sacrificing the ability to sample numbers of sample sites. These devices

provide a means of addressing the test stucture, if desired, to help localize either the position or number of

defects. The addressing circuitry allows a number of short test sections to be abutted together in a serial

fashion to provide go/no-go testing over the full array. If the array fails, the short sections can be addressed

either individually or in clusters using a binary search to progressively eliminate fault-free sections. The

addressing circuitry is, of course, provided with a self-test mode to insure that we do not misinterpret

peripheral 'ailures as being due to the cell array. Initial designs have divided the array into only 16 sections to

limit the number of pins required for address electronics so that we may maintain full compatability with the

NBS 2 by 10 probe array.

4.1.2 2 Micron CMOS Test Structures

A full set of test devices has been developed to characterize the 2 jum CMOS process. These test structures

attempt to study the performance of the n- and p-channel devices (both individually and taken together) as

well as a number of the important parasitic effects which are increasingly important as the feature size

decreases.

Even though CMOS is largely a ratioless technology (although it will not perform optimally with grossly

mismatched Z/L ratios), we wish to examine inverter performance to pick the optimum size for both the n-

channel and the p-channcl devices. At larger feature sizes (- 4 •jm and greater), the p-channel device is often

fabricated with a larger Z/'L ratio than the n-channel devic" to offset the fact the electron mobility is greater

than hole mobility at comparable doping levels. At a two micron feature size, this difference is not as large

because (a) the n-channel device is more severely dominated by velocity saturation effects than the p-channel

device and (b) for equivalent drawn gate lengths, the p-channel device will usually have a shorter effective

channel length because of increased lateral penetration of the source/drain regions.

Latch-up is the parasitic device phenomenon in CMOS which deserves the closest scrutiny and good test

stnrctures are essential to the characterization of the latch-resistance of any CMOS technology. Because the

operating voltages in small geometry integrated circuits have not been reduced, hot carriers are much more

likely to initiate latch-up in CMOS. For these reasons, our test structures include a variety of devices which

will be used to study the latch-up behaviour and hot carrier effects in 2 jim CMOS technology

0
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4.1.3 Measurement Hardware

Our pirametric measurement capabilities have been extensively modified during recent months. A HP

4145 Scmiconductor Measurement System and a HP 6942 matrix switch have been added to our

process/device characterization system. A HP 9845B controls these instruments as well as a Rucker and Kolls

1032 wafer prober and allows independent specification of the wafer stepping pattern, the matrix connections

to the probe card, and the actual test to be performed. A pieliminary investigation indicates that this software

will be readily compatible with a HP9826/36, should the need arise. We now have improved software which

drives the R & K 1032, so that our probing speed has been roughly doubled in recent months.

Staff. T. Walker, L. Gerzberg, W. Yarbrough

Relaed Efforts: M. Buehler (JPL), L. Linholm (NBS), V. Tyree (MOSIS), D. Trotter (Miss. St.)

4.2 The ICTEST System

The ICTEST system is a unified system for functional simulation and testing. The test is written in

ICTEST, a supersct of C extended to include testing primitives, data formatting, and mechanisms for

specifying parallelism and pipelining. The test may then be targeted to run against a simulator (ESIM or

TSIM) or a tester (MINIMAL, MEDIUM, or TEK S-3260). The MEDIUM tester is the testing workhorse;

the TEK tester is intended primarily for performance measurement and functional testing at speed.

ICTEST itself has remained relatively stable over this period. We continue to use it to test our designs,

including the MIPS test chips. Support for the clocking discipline is now substantially debugged, ,although we

need to rethink our approach to qualified clocks and decide how they might be supported on the TEK (if that

is indeed possible).

We are reducing the MEDIUM tester to a chip set. It will connect to a standard DEC DMA interface, and

we shall distribute it to the community when it becomes available. The chip set that we have designed

comprises 2 chip types, and a 64 pin tester will require a total of 3 chips. The tester control and pin electronic

chips have both been designed and submitted for fabrication. Additionally, we have designed test chips for

some new circuits that we need, including pads capable of driving 30mA loads. We have received the pin

electronics chip and the pad test chip and partially tested them. They both seem to work correctly.

Staff: D. Boyle, D. Marple, R. Mathews, J. Newkirk, 1. Watson

Related Work: FIFI Project (CalTech)
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References: [Mathews 82], [Watson 82]

4.3 Clocking Discipline

We have developed a 2-phase clocking notation and an associated clocking discipline. The objective is to

provide appropriate formal concepts for thinking about clocking in 2-phase systems, and to delineate a circuit

syntax guaranteeing consistent clocking. The clocking discipline can also be co-opted to guarantee other

forms of correctness, e.g., freedom firom charge sharing. The auditing tool clockck checks circuits extracted

by the ESIM extractor for conformance to the discipline.

We have finished gleaning information' from the Winter '82 testing class. Of 8 chips fabricated and tested,

3 designs had fatal clocking errors, and 2 had errors that could hurt performance. One of the three fatal cases

was of the most interesting sort: a design that passed extensive simulation completely, but failed the clocking

check and did not, in fact, work when fabicated.

Staff. R. Mathews, J. Newkirk, D. Noice

Related Efforts: Glasser's work (MIT)S
References: [Noice 821

4.4 Practical Testing

We have tested 30 more copies of a 10,000-transistor serial memory based on a 3-transistor RAM cell. The

memory was originally intended as a step toward a serial signal processing system, but has actually proved to

be test of our testing system and our understanding of the technology.

Of the 30 new parts from run M1DV, 40% are defect-free. Sixteen percent show anomalously low (less

than 100-microsecond) storage times of the sort we reported previously. The remainder have failures that

may be explained in terms of fabrication defects, with the exception of 2 chips that have the mysterious

property that while every bit in the memory plane seems to be finctioning correctly, when we apply error

correction to this perfect data, errors resultl

As a result of our frustration with short storage times, we have designed and tested a canary circuit that

monitors storage times directly. The storage-time oscillator is a 3-stage ring oscillator, one stage of which is a

storage node that is charged and allowed to relax toward ground.

0 We have tested 2 chips so far, one with very short (1 microsecond) storage times, The storage oscillator
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successfully indicates that the short-storage time chip is defective and that its companion is acceptable. Using

optical injection to vary storage times over a large range, we have found that the storage oscillator on each

chip predicts the storage time very precisely. The design seems to be insensitive to power supply variations,

but we will need to test more chips before we are completely confident.

As a simple experiment in performance measurement, we have designed and tested an instrumented family

of 7 PLAs with different loading characteristics. We have measured the performance of each path through

each chip and computed regression lines to fit the observed data with delays predicted by r models. The

observed fits are very good, with correlation coefficients around .8 and derived 'r's ranging from .25 to .57

nanoseconds. However, the intercepts of the regression line are non-zero, indicating systematic measurement

errors specific to each member of the family. We are currently trying to chase these errors to ground.

Staff: G. Eckert, R. Mathews, J. Newkirk, T. Saxe, L. Shwetz, I. Watson

Rejerences: [Saxe 821

5 Theoretical Investigations

5.1 Connected Components Algorithms

Finding the connected components of a graph, given its adjacency matrix, is a problem that has received

much attention recently, but the best way to implement the algorithm in VLSI is not known, Using the A4'2

measure, it is possible to solve the problem in n2+ for an n node graph if one uses the mesh-of-trees, a layout

that requires a great deal of area. Lipton and Valdes considered layouts that used area proportional to the

number of nodes, and came up with an Wr÷ e algorithm that is, unfortunately, not whcn-oblivious; the time at

which inputs are required depends on the data, A. Siegel has recently invented an algorithm that runs in the

same time as the Lipton-Valdes algorithm, is when-oblivious, and uses only n pads. The area is on the order

of n3" 2, so its figure of merit is AT7-- n3"5 ÷ e, which is better than any known n-pad algorithm. The material

has not yet been written down by the author, but a sketch appears in [Ullman 82b].

Staff: A. Siegel, J. Ullman

5.2 Modular Model of Event-based Concurrent Systems

The formal model we have been developing has two major components: a structural algebra for describing

module interconnection structures, and a behavioral semantics that defines the function computed by a

0 network of modules. Most of our work in the last six months has concentrated on the behavioral semantics.
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As described in a previous report, the behavioral semantics associates with each module and network of

modules:

* a functional mapping between partially ordered events at input and output ports,

* a domain constraint, specifying that certain output events must precede certain input events, and

D a functional constraint, specifying that certain input events must precede certain output events.

The domain constraint is essentially a statement of the conditions under which the module can be expected to

work correctly. For example, it might require that no new input events arrive until after all outputs for the

current input values have been produced. If the domain constraint is violated, the behavior becomes

unpredicatable. The functional constraint, on the other hand, contains information about when a module will

produce new output events. Thus the domain constraint tells what the module requires of its environment,

and the functional constraint tells what it guarantees.

Our recent work has been particularly concerned with the problems of module substitution and the

semantics of non-deterministic systems. The module substitution issue arises because we often wish to

substitute one module for another in a network and need to know when this can be done without affecting the

properties of the network. A simple criterion for such substitution is semantic equivalence. If two modules

have the same functional mapping, domain constraint, and functional constraint, then one may replace the

other without any change in the network's behavior.

In some cases, however, we need a more flexible criterion. We would like to be able to make a substitution

so long as it allows the network to continue working correctly and produce the same output. This may be

possible even with modules that are not identical. For example, suppose we have a system containing a

module that can perform correctly as long as it is asked to buffer no more than three input elements at a time.

(This would be expressed in the domain constraint.) If we replace this module with one that is identical

except for the fact that it can buffer more items, then the new network should continue to work correctly. In

general, we can always replace a module by one with a weaker domain constraint. If the environment of the

original module guaranteed that the stronger domain constraint was satisfied, then the weaker one will

necessarily be satisfied, and the composed system will continue to perform correctly. likewise, we can always

substitute a module with a stronger functional constraint, because if the original module operated in a way

that satisfied the domain constraints of other parts of the network, then the (more constrained) new module

must do so too. Thus we can perform such a substitution if the new module has an identical functional

mapping, weaker (or identical) domain constraints, and stronger (or identical) functional constraints. The

new network may not be equivalent to the old, but it will operate correctly in any environment where the old

one does. This sort of substitution arises very naturally when the original system is viewed as a specification

and the substitution represents an implemenlation of the specification.
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The second problem we have considered is extending the semantics to non-deterministic systems. Non-

determinism is a property of many concurrent systems. It may arise even in networks where all the primitive

modules are deterministic; this is because the relative timing of events at different modules is unpredictable,

and different timings may cause the system to produce different outputs. A non-deterministic module can be

described by altering the functional mapping to give, for each input, a set of possible outputs. There are

several technical problems that must be resolved in this sort of definition. The most significant is being able

to guarantee that loop-feedback (the operation that sends some of a network's output to its own input ports) is

always well-defined. By modifying the approach of Plotkin and Smyth, which deals with non-determinism in

state-oriented rather than event-oriented models, we have been able to solve these problems and develop a

mathematically sound semantics for non-deterministic networks.

Staff: S. Owicki and N. Yamanouchi

5.3 Defect Tolerance in Array Architectures

We have developed a new body of theory treating the effect that defects have on yield of array

architectures. The theory addresses such issues as whether it is possible to find chains or arrays of working

elements embedded in a large array and what reconfiguration capabilities must be available for the yield of

the reconfiguration process to be non-zero.

For the problem of finding a connected chain of working elements in a square array, we have developed a

new algorithm that requires time linear in the number of elements to be chained. We have also made

progress on the problem of finding an array of working elements embedded within a larger array by

tightening the bounds determining when such reconfiguration is possible. We are beginning some new work

investigating the effects of defects in the interconnect itself.

Staff. A. El Gamal, J. Greene

References: [GreeneEl Gamal 821

5.4 Wiring Area for Gate Arrays

By applying statistical modeling techniques, we have developed a body of theory that predicts how to

realize a given function in a gate array with smallest overall die size. The central result is that it is preferable

to have a smaller gate array with a larger number of tracks in between blocks, thereby permitting higher

overall use of the array elements, rather than sparsely using a larger array. These theoretical results arc borne

out by a large body of empirical data collected by IBM.
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Siqffi A. El Gamal

References: [EL Gamal 821

6 The SUN Workstation: File System Development

The SUN represents a radical departure from the customary workstation design in that it does not have a

local disk. A typical SUN workstation at Stanford has 256K bytes of memory, a frame buffer with some

additional memory to hold the raster image, and a high-performance Ethernet link. In order to use the SUN

as a workstation for VLSI design or other applications, it must be possible to read and write file storage from

software resident in the SUN.

Our initial approach, which permits us to run simple software on the SUN, was to implement a page-at-a-

time file server called a Leaf Server, which ran on a supporting computer (usually a Vax) and provided disk

page access in response to request packets. This server and its development were reported in last year's

progress report, and we have done little work to it since. It is worth mentioning that the Unix-based Leaf

Server that we wrote last year was made available to other Arpa-supported users of Xerox 1100 Lisp

Workstations, and (after suitable modifications at ISI to make it compatible with the Xerox equipment) it

S provides a valuable disk support facility to Al programmers using the 1100s.

Our experience with the Leaf Server approach to Remote File Access demonstrated conclusively that a

single-host file server was not an adequate level of file support for a network machine participating in a

distributed system. We experimented for a few months with changes that could be made to the Unix file

system or to the behavior of the Unix Leaf Servers that would make a more reasonable distributed file system

available to SUN users. We abandoned this approach for three reasons:

" TIhe Unix file system does not map neatly to a distributed environment. At the design level, it
assumes that there is at most one copy of any file, and that the entire file system is tree-structured.
It is difficult to modify the Unix kernel to think that parts of its file systems are on other machines,
though at the 1981 SIGOPS conference some Bell Labs researchers reported having accomplished
it (with a severe degradation in performance.) At the implementation level, its locking
mechanisms are unreliable and the fixed 1/O table sizes in the kernel provide unreasonable fixed
bounds on the total number of files that can be accessed simultaneously on a given server host.
We thought that we could get by with a combination of a few kludged Unix file systems for the
first generation of SUN software, but the problems overwhelmed us.

"* Leaf-Server access to files on a time-shared Unix system was a second class citizen. We frequendy
found the need to log a job on to the host Unix, probe around the file system, then log off and
resume a stopped SUN job that was having file problems. This problem could be bandaged by
providing a set of File utility programs resident on the SUN, but the essence of the problem is that
a Unix file system is not very suitable for a non-Unix-like operating system; we do not intend to
run Unix on our SUNs.
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* Even with just 4 server hosts available (3 Unix and one Tcnex), the amount of context that needed
to be maintained in a user's head was overwhelming. The lack of automatic location, migration, or
replication facilities made it particularly difficult to find files whose precise location was not
known.

We therefore, reluctantly, concluded that we were going to have to design and implement our own file

system to our own specifications. This file system would be network-wide, provide a uniform set of access

mechanisms and management tools, and be implemented on a variety of file computers.

We have settled on a multi-level design based around a central archival file system and distributed cached

copies. We are implementing the design "from the inside out", starting with the reliable archival part and

working towards the fast cache servers; the reasoning behind that decision being that it is better to have a slow

reliable file system than a fast unreliable file system during the development phase. We intend to present a

paper on this system at the 1983 SIGOPS conference, whose paper submittal deadline is in January, and we

intend to have the archival server working and the migration protocols designed by that time. The initial

implementation is taking place on our time-shared VAX, but we hope to move to a dedicated machine with a

larger disk as soon as it becomes available.

SiaffT J. Mogul, B. Reid

References: [Baskett 821

6.1 Computer support for a Fast Turnaround Laboratory

We have completed the planning and exploratory stages of a project to provide extensive automation and

computer support for the Fast Turnaround Laboratory. This ambitious interdisciplinary project (involving

researchers from Computer Systems, Integrated Circuits, and Solid State laboratories) will provide control,

documentation, training, portability, repeatability, and efficiency in the area of IC fabrication processes.

As a result of this exploration, we have isolated the following goals for this project:

* Automatic control of the IC fabrication processing equipment.

* Integration of fabrication control with simulation control, to run simulation and fabrication in
parallel.

* A transportable, repeatable means for recording a fabrication process.

* I1lie ability to repeat an arbitrary process on demand, for demand production of parts.

* 'he ability to manage and schedule a single IC fabrication line for multiple purposes.
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o Computer aids for training and documentation.

e General data processing and database support for analytic work, in the Laboratories.

We recognize that particular technical achievements will contribute to the realization of several of these

goals. The most important of these is the development of a language for the representation of fabrication

processes. When this language exists, it can be used as input to the control system, as input to the simulation

system, as the contents of an archive for demand production of parts, and as a basis for training and

documentation aids. Furthermore, the nature of this language will color most of the other work.

We have therefore spent several months on the preliminary design of such a language, our I.anguage for

Specifying Manufacturing Processes, or LSMP. (We intend to change its name before its specification is

published, but we are for the moment calling it LSMP internally). This language resembles Ada semantically,

but contains built-in type support for non-numeric types pertaining to manufacturing, and contains extension

and package mcchanism: suitable for the description of typed objects whose physical existence is outside the

controlling computer, e.g. furnaces. We quickly found that two languages were necessary, one to describe the

manufacturing process and another to describe the fabrication line itself. This second language corresponds

very much to the microcode found on conventional computers, and it is used to implement a somewhat

abstract instruction set, into which the LSMP is compiled. A compiled LSMP program can operate an

automated fabrication line with the appropriate microcode, or it can operate a simulation system (one

component of which would be programs like SUPF.EM) with a different set of microcode. Other microcode

would be written to permit experimentation and testing of new processes before actually turning them loose

on the fabrication equipment.

Only by implementing all pieces of this system and actually using it to manufacture parts can we satisfy

ourselves that it is complete; we would therefore want to do an automating implementation even if that were

not one of the goals of the project.

Having completed the first level of implementation, we intend to write software that amounts to a

distributed time-shared operating system for the fabrication line, this will permit multiple independent

fabrication processes, or laboratory experimentations, to be run on the same fabrication line simultaneously

just as a time-shared computer is now capable of running independent programs simultaneously. This

operating system will also take responsibility for the long-term scheduling and priority realization.

We consider that a system like this will be a superb tcstbed for explorations in knowledge-based systems for

training and diagnosis. and for applications of interactive graphics. computer aided instruction, and reliable

models of computation. We therefore hope to attract talented graduate students from various areas related to
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computer science, in addition to the core of people knowledgeable in IC fabrication, to this project. Currently

Prof. Brian Reid is spending 90% of his research time on this project, and one graduate student, Harold

Ossher, is working on it full time. Several more graduate students are eager to join as soon as funding

becomes available to them.

7 Fast Turn-Around Laboratory

Activities if the Fast Turn-Around Laboratory have concentrated on the characterization of a significant

amount of fabrication, mask making, and testing equipment followed by the subsequent incorporation of

these items into the primary NMOS and CMOS processes. The following subsections of this report will detail

the performance of many of these pieces of equipment and indicate how they have enabled us to increase the

quality of our NMOS/CMOS wafer production and the quality of our device research.

7.1 Wafer Fabrication

During this period upgrading the processing lab has continued, in order to meet the project goals of

establishing standard 2 micron CMOS and NMOS processes. Much of this effort was directed at bringing on-

line and characterizing the equipment ordered during the previous reporting period. This equipment includes

three low pressure chemical vapor deposition (LPCVD) systems, two plasma dry etchers, and a photoresist

processing system. In addition, a 1:1 projection alignment system capable of 1.25 micron linewidths was

installed and is being characterized. Finally a sputtering system and linewidth measurement system have

been ordered.

7.1.1 Low-Pressure Chemical Vapor Deposition

The older multi-purpose atmospheric Epi/CVD system has been replaced by three (poly, nitride and

oxide) dedicated LPCVD sytems. Low pressure deposition offers significant improvements over atmospheric

deposition as following:

1. Improved thickness uniformity (2% vs. 15%) due to the 103 improvement in the gaseous diffusion
coefficients.

2. Fewer particle generated defects due to vertical wafer positioning and the "hot" wall deposition
on the tube in the LPCVD system, versus horizontal positioning and "cold" wall deposition in the
atmospheric system.

Nitride CVD is essential to the local oxidation isolation process used for NMOS and CMOS. Use of the

LPCVD nitride system is now standard in our lab, and is capable of depositing the required 800 Angstrom

film to a uniformity of 2%. The typical deposition rate is 36 Angstrom/min. The gas flows are 20 SCCM of
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dichlorosilane and of 60 SCCM of ammonia. The furnace temperature is 790 degrees Celsius and the

deposition pressure is 500 mT.

Doped polysilicon is used as the g,•te material and as a conductor in both NMOS and CMOS. The change

over to LPCVD not only improved thickness uniformity and particle control, but also reduces the grain size

because of the lower deposition temperature (620 degrees C for LPCVD vs. 900 degrees C for APCVD). The

smaller grain size is important since it reduces grain boundary related oxide defects, and reducec poly edge

roughness. The poly deposition is also done at a pressure of 500 mT and with a silane flow of 30 SCCM. The

deposition rate is 90 Angstrom/min.

The last of the new LPCVD systems which is operational is the low temperature oxide (LTO) system. '[his

phosphorus-doped oxide deposited at 450?C is intended to replace the atmosphere-deposited vapox layer

which is reflowed to improve step coverage. Initial undoped LTO films show excellent uniformly (roughly

1%) and conformal step coverage. The deposition pressure is 400 mT and the flows are 60 SCCM of silane

and 95 SCCM of oxygen. Phosphorus doping during deposition is now being characterized.

7.1.2 Plasma Etching

In order to achieve line widths of three microns and less, wet etching must be replaced with dry etching

techniques. For poly and nitride etching, a Drytek RIE 100 etcher has been purchased. This etcherwhich is

in routine operation, operates in the plasma etch mode. It is fully automated to eliminate handling-induced

defects and to give better process control. A key feature is its use of a interferametric laser end point detection

system. For poly etching, a controlled slope process has been achieved which gives a 70 degree wall slope

with a critical dimension loss of only 0.1 micron per edge. Controlled slope, as opposed to pure 90 anisotropic

etching, is desirable for step coverage needs. The present process uses a mixture of C2CIF 5 and SF6 both at

flows of 50 SCCM. The pressure is controlled at 150 mT and the RF power density is at 0.3 watts per cm2.

For this process, the etch rate is 2000 Angstrom/min, and the selectivity of poly to both the resist and the

underlying oxide is 20:1.

For the less critical etching of silicon nitride films, an isotropic process is used. This process uses a mixture

of CF 4 and 02 with flows of 90 and 10 SCCM, repsectively. The pressure is again set at 150 mT and the RF

power is again 0.3 watts per cm2. The etch rate is 160 Angstrom/min with selectivity to oxide of 4 to 1.

For the etching of SiO 2, 'Branson/IPC has given us one of their Sigma 80 etchers. This unit is an

automated single-wafer-at-a-time machine. The SiO 2 process uses a mixture of C2F6, CHFI3 and He at

respective flows of 300, 300, and 3000 SCCM. The pressure used is 10 Torr and the power density is 5 watt/

cm 2. The etch rate on thermal oxide is 5000 Angstrom/min and the selective to both resist and silicon is
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0 roughly 7:1. The resulting oxide wall slope is currently 75 degrees. Thle process is being modified to improve

selectivity, uniformity, and wall slope.

7.1.3 Photolithography

An automated photorcsist resist processor has been brought on line. This machine offers full cassette

operation with microsprocessor control of all functions and will significantly reduce resist related defects.

Functions include priming, resist coating, "puddle" development, and microwave baking. The processor is in

standard use except for the microwave bake feature, which will replace the use of the resist bake oven when

characterized.

An Ultratech 1:1 projection stepper has recently been installed and is being characterized. This machine

offers significant area utilization improvements over our Canon 4:1 manual stepper, which is limited to a total

exposed area of only 3 cm by 3 cm. The Ultratech is a fully automated state-of-the-art optical alignment

system which has auto focus, alignment, and load. It has a working fesolution of 1.25 microns, with an

alignment accuracy of 0.14 microns. The pellicle protected reticle has four selectable fields which offer a

maximum unique silicon area of 6 cm 2. An advantage of this stepper over the popular 10:1 systems is that it

uses two wavelengths (405 and 436 nm) and thus is less susceptable to standing wave problems.0
An optical linewidth measurement system has been ordered. This auto focussing unit will be used to

obtain tighter control of linewidths during processing.

These pieces of fabrication equipment have been used in the fabrication of both NMOS and CMOS device

wafers. The performance of the CMOS devices will be discussed in the Device Research subsection.

7.2 Electron Beam Lithography

The principal activity of the E-beam lithography group involved the installation, characterization, and,

finally, the on-site acceptance of the Perkin-Elmer/ETEC MEBES machine. The on-site acceptance tests

included extensive testing of the registration (alignment) accuracy of the MEBES machine in anticipation of

its use as a direct-write lithography tool. During the period when the F-beam machine was undergoing

acceptance tests, we were characterizing the resist developing and chrome etching systems in our lab. The

first use of the ability to develop and etch chrome plates was to produce the 2 [Lm CMOS test plates for Jim

Pficster. These plates were actually written at P-E/ETEC, but developed and etched at Stanford, before our

machine had passed on-site acceptance.

At present, we are in the process of making masks for the Ultratech 900 projection lithography system. The
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Ultratech is a 1: 1 wafer sterwr whose mask requirements are somewhat different from that of a Perkin-Elmer

140/240, so we ate at prcsent caretallly formatting these platcs manually rather than using the MOSIS service.

It does appear, however, that we will be able to automatically place the desired dice, alignment marks, and

scribe lanes, 'l'his first mask set will include Jim Clark's Geometry Engine, several of John Hennessy's MIPS

test vehicles, and the two chips designed by Ncwkirk/Mathews/Watson that comprise a medium tester.

In addition to working with the MEBES machine, we have been developing a tri-level resist technology for

use in direct-write applications. The principal need for a multilayer direct-write technology is to provide a

thick, chemically resistant "working" layer of resist on the wafer and yet maintain a thin, high resolution layer

of resist for the actual electron patterning..

In our tni-level, the underlying layer of resist is 1.2 jm of AZ-1470 which has been baked at 200 degrees

Celcius to remove any photosensitivity. The AZ-1470 has very good chemical resistance, planarizes the wafer

surface, and reduces secondary electron backscatter (compared to a silicon substrate) which can be a source of

image degradation. The second layer is a thin (500-800 Angstrom) layer of poly-Si which will ultimately be

used as the intermediate masking layer in the process of transferring the pattern from the PBS electron resist

to the underlying AZ 1470, We wish to keep this layer thin and of low atomic mass to minimize secondary

electron image degradation. We have used both evaporation and plasma-enhanced chemical vapor deposition

to deposit this layer. Researchers who are exploring t'i-level resist for use in optical lithography favor the use

of SiO 2 as the intermediate material because of its low index of refraction. For electron exposure, however,

the slight conductivity of poly-Si is preferable to reduce charging effects. The top layer is 0.4 jm of PBS

electron resist which is coated, exposed, and developed as if on a chrome blank. This pattern is then

transferred to the poly-Si using plasma etching (an anisotropic CF 4 + 4% 02 etch is adequate because the

poly-Si is so thin) which in turn serves as a mask for 02 reactive ion etching. Using a partial pressure of 6 jm

Hg of 02, we have achieved nearly vertical sidewalls in features 0.5 prm wide separated by 0.5 jim.

We have been investigating two reactive ion etching systems for routine use in this application: one is

manufacturercd by Matcrials Research Corporation and the other is manufacturered by Drytek.

7.3 Device Research

Many different aspects of our device research program have an impact on the development of a 2tAm

CMOS technology. Jim Pfiester has designed a mask set containing a wide variety of CMOS test structures to

aid him in the development of this process. The mask set was generated without the use of bloats or shrinks

during mask making to provide an accurate measure of what bloats/shrinks will be required to produce the

"drawn" dimension in silicon. This is an n-well process which has a surface concentration that does not
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require a channel stop for the p-channel devices. The n-channel drain/source junction depths are only 0.3

ptm deep and the p-channel drain/source region are about 0.55 ljm deep. The measured electrical channel

length for the n-channel and p-channel devices was 1.6 and 1.1 pAm for a drawn dimension of 2.0 pm,

indicating that our poly-Si plasma etching is providing an anisotropic etch profile because most of the

difference between the effective and drawn channel lenghts is due to the lateral diffuaion from the drain and

source regions.

Electrically, the n-channel devices look very good in terms of leakage current, threshold voltage. Previous

runs had indicated that drain-induced barrier lowering (DIBL) is the most stringent test of these devices.

These devices exhibit very good drain-induced barrier lowering properties. The threshold voltage of the p-

channel devices are as we expect them to be. Unfortunately, these first devices had a parasitic leakage current

from drain to substrate along the surface of the n-well which is superimposed on the actual drain/source

current. The cause of this leakage is under close scrutiny and two sets of additional CMOS wafers are nearing

the end of the fabrication sequence.

In order to help in the investigation of latch-up in short channel CMOS structures, we have initiated a

program to investigate the properties of devices as a function of temperature. From a device physics

standpoint, it is extremely desirable to have such a capability in order to establish the activation energy of the

phenomena under investigation. We are at present constructing a test fixture which will allow us to scan the

temperature of a packaged device from 77 degess Kelvin to 100 degrees Celsius.

Staff. J. Shott, J. McVittie, E. Wood, K Saraswat, R. Castellano, F. Pease, D. Dameron, C.-C. Fu,

P. Jerabek, J. Plummer, J. Pfiester, T. Nguyen, L. Lewyn, J. Marshall, A. Henning, D. Gardner

8 Other Projects

8.1 Polygon Package and Design-Rule Checker

For some time now, we have made available a high-quality design-rule checker based on our polygon

package. It derives circuit connectivity information to prevent reporting of false separation errors between

electrically connected components. This checker is used by our design classes and for our research and has

been heavily tested by 80+ designers. We have recently added support for buried contacts in nMOS.

We have developed and tested an analogous checker for the JPI. bulk CMOS rules. It has checked the

designs submitted by Stanford, MIT, and Lincoln Labs for the bulk CMOS run. We have distributed the

CMOS checker to JPIL and MIT.
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Staff. D. Noice

8.2 Cell Library

The nMOS cell library is now being prepared for publication by Addison-Wesley as a companion to the
Mead and Conway text. Accordingly, we are cleaning up the documentation, correcting minor design-rule
violations, and thoroughly checking the cells. Some new cells will be included, such as LSSD PLA buffers.

We have designed and submitted bulk CMOS cells to form the basis of a CMOS cell library. The new cells

are pads, PLA designs, and counters.

Staff. R. Mathews, J. Newkirk, J. Shott, T. Walker

8.3 Modifications to MIT Circuit Extractor

We have integrated the MIT circuit extractor with our CLL/CIF processing software, resulting in an order-
of-magnitude improvement in extraction speed. Previously, the 10,000-transistor serial memory required
several hours to extract; extraction now requires approximately 10 minutes. We will distribute the extractor if
there is sufficient interest; however, prospective users should be aware that our CIF processing system is
restricted to Manhattan-only, rectangle-only designs.

Staff.- J. Newkirk, T. Saxe, S. Taylor
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Palhadio: An Expert Assistant for Integrated Circuit Design1

Department of Computer Science, Stanford University

Mark Stefik
VLSI System Design Area, Xerox PARC

Abstract We are currently developing a sys em. Palladio, which serves as a vehicle for
experimentation with various integrated circuit design methodologies and with knowledge-based expert
system design aids. This paper describes the basic design concepts underlying Palladio, the overall
architecture of Palladio and the current development status

1. Introduction

The Palladio 2 system is a framework for experimentation with integrated circuit (IC)
design methodologies, expert system techniques, and symbolic circuit simulation
concepts. Palladio serves as the focus for the Knowledge-based VLSI Project (KB-
VLSI project), a collaborative activity between the Heuristic Programming Project,
Stanford University and the VLSI System Design Area, Xerox Palo Alto Research
Center.

The KB-VLSI project is concerned with understanding the processes by which
artifacts, in particular, integrated circuits, are designed. The long-term goals of the
project are:

Identify and articulate the expert knowledge used in integrated circuit design.
An objective here is to gain an understanding of the design process and to
develop cognitive models of the process.

Develop methods for representing and reasoning with design knowledge.
Such reasoning involves design constraints, goals, and tradeoffs.

Develop knowlege-based expert systems for assisting in the IC design, test and
debug cycle. The systems include aids for entering and recording IC design
specifications and aids for transforming abstract design specifications into
more detailed specifications.

I The Stanford University component of this research is funded by the Defense Advanced Research

Projects Agency under Contract MDA-903-80-c-007.

2 Andrea Palladio (1518-1580) was an Italian Renaissance architect of great reknown. He is perhaps
best known because he developed a methodology of proportion and formal architectural style that
has become known as classical architecture. In a sense, he was the first knowledge engineer of
design principles and his influential published works are still in print foui hundred years after his
death.

0
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Palladio is the primary research vehicle for the KB-VLSI project.

2. Palladio's Model of the Design Process

An IC design process can be viewed as the creation of behavioral and structural
specifications of a circuiL This usually involves a sequence of transformations from
abstract specifications of the behavior and structure of the circuit to more detailed
implementation specifications. For example, the design of a combinational logic
circuit may involve first transforming a specification of the circuit in terms of
boolean equations which relate the inputs and outputs into a specification in terms of
logic gates and interconnection networks, and then transforming this latter
specification into a layout specification expressed in terms of "colored" rectangles.

A useful metaphor for this transformation process is that design is search [7]. The
designer searches in a solution space of implementation specifications. Moves in this
space are design decisions. Each design decision involves considering alternative
implementations, testing the alternatives against the constraints and goals imposed by
the abstract specifications, and using tradeoffs to differentiate between "satisficing"
alternatives and to resolve conflicts between incompatible constraints and goals. The
design decision process is difficult because: (a) the solution space is large, (b) the
generation of alternative solutions is expensive, (c) only partial information is
available, (d) it is not possible to predict all of the consequences of a decision.

2.1. Design Hierarchies

SIC designers have, in part, coped with the difficulty of making design decisions by
exploiting hierarchies in the design process. One powerful hierarchical technique is
to decompose a device into semi-independent subdevices and to focus attention on
each subdevice individually. For example, a 4-bit register can be considered as four
1-bit registers and their interconnections. The focus on a subdevice reduces the size
of the solution space under consideration.

The device-subdevice hierarchy is only one way of partitioning the design process.
Design using description levels (abstract models of circuits) is a complementary way
to do it. Each description level provides languages for describing the behavior and
structure of a device which suppress particular details of physical implementations of
the device. The use of description levels reduces the complexity of the elements in a
solution space and makes the generation and comparision of alternatives less
expensive.

Description levels also permit a designer to partition concerns by concentrating on
subclasses of design decisions. For example, at an architectural level a designer can
work out certain storage and communication decisions before worrying about power
considerations. The derivation of useful design description levels requires significant
domain-specific knowledge - a sort of "engineering of knowledge" [8].

We are currently experimenting with four description levels in the Palladio system:
Layout, Clocked Primitive Switches (CPS), Clocked Registers and Logic (CRL) and
Linked Module Abstraction (LMA). Collectively, these levels factor the concerns of a
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digital designer [6].

h11e most widely used description level in integrated circuit design is the artwork or
layout level. This level describes integrated circuits in terms of "colored rectangles"
(representing material on a chip) that can be composed to build up large designs.
Associated with the colored re&tangle terms of the layout level is a set of composition
rules, called layout design rules. The layout composition rules provide a simple
shallow model of composition that is based on a deep model of electrical properties
and fabrication tolerances. If designers follow these rules, their designs are
guaranteed to have adequate physical spacing on a chip [3, 4].

The layout description level has several important properties which make it useful
for the synthesis of designs. First, primitive terms can be combined to form larger
terms and subsystems. Second, there are rules of composition that define the
allowed compositions of these terms. These rules apply both to composite objects
and primitive terms. Third, there is a well characterized set of bugs that are avoided
when the composition rules are obeyed. At the layout level, these bugs correspond
to the function and performance problems caused by incorrect physical spacing.

All of our proposed more abstract description levels have properties analogous to
those of the layout level. The CPS level distinguishcs between different uses for
logic and is concerned with the digital behavior of a system. Different uses of logic
include steering logic, clocking logic, and restoring logic. The composition rules at
this level prevent bugs of non-digital behavior caused by charge sharing and invalid
switching levels. The CRL level is concerned with the composition of combinational
and register logic. The composition rules at the CRL level preclude various bugs
related to clocking in a two-phase system. The LMA level is concerned with the
sequencing of computational events in a digital system. It describes the paths along
which data can flow, the sequential and parallel activation of computations, and the
distribution of registers. The composition rules at the LMA level preclude bugs such
as starting computations before the data are ready, and deadlock bugs that arise from
the improper use of shared modules.

2.2. Design Knowledge Bases

Much of the design of ICs is done by using parts of existing designs, possibly with
modification. TI7his technique exploits the fact that there are common constructs used
in many circuits; for example, registers, NAND gates and input-output pads. The
use of previously designed (and debugged) components in a current. design is
analogous to the use of subroutine packages in software development.

In Palladio, knowledge about previously defined circuits is kept in community
knowledge bases. These knowledge bases can contain not only exisiting designs but
also collections of knowledge about the composition and the optimization of circuit
components. For example, at the CPS level we are developing a knowledge base
which includes a collection of prototype logic gates, a set of rules that define the
allowed composition of these gates and a set of optimization rules for reducing
various costs of circuits composed of networks of gates.

0
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The use of community knowledge bases in Palladio is stpported by the LOOPS
system [1]. LOOPS is an object and data oriented programming system implemented
in the lnterlisp [91 programming environment. LOOPS was created, in particular, to
support a design environment in which there are community knowledge bases that
people share, and to which they can add incremental updates.

2.3. Design Evblution

The design of a complex artifact such as an integrated circuit is an evolutionary
process that follows an iterative cycle: create a candidate design - test the candidate
design against current requirements - modify the design and/or requirements to
create a new candidate design. An IC design system should have facilities for
interactive simulation to provide a rapid feedback between proposed changes and
their exercise on test cases.

Within the Palladio fiamework, we have begun experiments with interactive, rule-
based symbolic circuit simulators. These simulators use symbolic reasoning on a
hierarchy of behavioral and structural specifications for a circuit in order to predict
the outputs of the circuit given a set of inputs. The simulators include a dynamic
display capability, i.e., "animated simulation cartoons." Our objective is to develop a
design environment based on simulators, interactive editors, and debugging tools
comparable in power and flexibility (and in concept) to, for example, the Interlisp
Programmer's Assistant [10].

* 3. Palladio's Architecture

A major purpose of the Palladio system is to provide a common starting point and a
framework for the research activities of the KB-VLSI project. As such, Palladio must
be sufficiently general so that it can be easily extended as our research continues. At
the same time, Palladio must admit sufficient specialization so that we can rapidly
experiment with particular design concepts, To achieve these goals we have used a
knowledge based architecture for Palhidio.

The overall architecture of the Palladio system is shown in Figure 1.
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0 Circuit Dmgner
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...... •.......................................
Private and Community Knowledge Bases
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Knowledge Engineer -

Figure 1. Palladio System Block Diagram

There are two classes of users of Palladio: knowledge engineers and circuit
designers. Knowledge engineers use the knowledge base editor to enter concepts and
rules of design that define Palladio's design methodologies. This knowledge is kept
in community knowledge bases. Circuit designers interact with the design editor and
designer's assistant to create circuit designs. The design editor enables a designer to
enter and modify circuit descriptions at various levels of description. The editor uses
the composition rules of each design methodology to assure that the design is "'legal"
with respect to that methodology.

The designer's assistant is an active element that can propose design decisions. The
two programs are integrated with a single graphics interface from which the user can
control the activity and participation of the designer's assistant. The design editor,
designer's assistant, and knowledge base editor all communicate with the knowledge
base via the knowledge base management component of LOOPS.

4. Current Status

Most of the supporting framework for the Palladio system is currently in place. The
LOOPS programming system [1], has been fully implemented. 'A high-level, object-

• •s ,



6

oriented graphics package has been developed for the Xerox Dolphin personal
computer, the development machine for the KB-VLSI project. This package,

* HILGA [2], is interfaced with the LOOPS system. The GLISP language [51, has
been interfaced with LOOPS. GLISP provides LOOPS with optimized data and
procedure access.

Prototype cominunity knowledge bases for the CPS and LMA description levels are
substantially completed. The initial knowledge bases for the layout and CRL levels
are under development. A rule-based design editor for the CPS level is partially
implemented.

A prototype "animated" simulator for the LMA level has been implemented. The
implementation of an interactive simulator for the CPS level has been started.

Research has been initiated on expert system design assistants to aid in transforming
abstract design specifications into more detailed specifications [111. This work
includes research on the use of tradeoffs in the design process.

By the end of this year we plan to have enough of the Palladio system in place so
that it can be used to create designs of simple, "student - level" integrated circuits.

5. Concluding Remarks

An important purpose for Palladio is as a vehicle for community building..
Oppo'rtunities for developing systematic bodies of design knowledge will appear in
many parts of the VLSI design community. Although knowledge engineering
provides effective techniques for capturing and debugging this knowledge, these
techniques are not widely understood or practiced in the VLSI community. In
particular, there is a shortage of trained knowledge engineers and suitable computers
for this work. Because of the intellectual and computational hurdles, it is unlikely
that expert systems will be widely available in the community for several years. It is
our intention to keep this part of our research open and to invite experimentation
with our facilities and participation by other members of the VLSI design
community as opportunities arise.

6. Acknowledgements

The development of the Palladio system is a team effort involving all of the members
of the KB-VLSI project. The current members of the project are: Gordon Foyster,
Phillip Gerring, Gordan Novak, Narinder Singh, Christopher Tong and the first
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Abstract

SILT is an efficient, medium-level language to describe VLSI layout. Layout features are described in
terms of a coordinate system based on the concept of relative geometry. SILT provides hierarchical
cell description, a library format for parameterized cells with defaults for the parameters, constraint
checking (but not enforcement), and some name control. It is designed to be used with a graphical
interface, but can be used by itself.
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1. Introduction

1.1 SILT Overview

In many endeavors, especially VLSI design, what seems to be the last 10% of the work often takes

90% of the time. It is often not too difficult to lay out the inItial circuit, but "small" modifications can

take an enormous amount of time. One of the main goals of the SILT VLSI layout language is to make

such modifications easier, Another goal is to provide a convenient form for general library cells that

provides for some "stretch" in the cells, Finally, SILT's naming conventions are designed help the

user keep track of the names involved in a large hierarchical circuit.

It is easiest to describe SILT as a language by analogy with programming languages. CIF

corresponds to machine language, CLL (a Stanford language that is essentially CIF with symbolic

names instead of numbers, see [5]) corresponds to an absolute assembler, and SILT corresponds to a

relocatable assembler. SILT is not a "silicon compiler" in that it is descriptive rather than procedural.

Because of this, it is not too hard for the user to figure out exactly what geometry will be produced by

a given set of instructions. Geometry produced by SILT would bear roughly the same relation to the

geometry produced by a true silicon compiler that machine code produced by a language assembler

* would to that produced by a full-blown compiler.

SILT has some features not present in CIF or CLL. The most important is probably the

parameterization of symbols which can be extremely important for a library format, SILT's local

names and its method of exporting only certain names outside symbols help to control the size of the

name space. Finally, SILT provides some mechanism for constraint checking that is done

automatically when symbols are expanded.

SILT's syntax looks much like that of a block structured language such as ALGOL or PASCAL. A

SILT file is a series of symbol definitions followed by calls on those symbols. A symbol includes a

parameter list, some declarations (including, perhaps, definitions of other symbols), and a series of

symbol calls. The symbol calls can be on previously defined symbols or on primitive symbols, such as

rectangles, contact cuts, and butting contacts. The scoping rules for names are similar to those in

PASCAL, so symbols and variables declared within another symbol are local to it. The mechanism for

passing data to and from a symbol will be discussed in greater detail later. There are advantages and

disadvantages to this, which are described in 3.1.

S SILT can be used by itself to lay out circuits, but it is designed to be used with a graphical front end.
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The language is designed to be an Interchange form, however, so It In not tied to any particular

* graphics editor.

It is possible to use SILT using input generated by other graphical editors. The only requirement Is

that they be able to produce CIF output. In SILT, certain symbols can be declared to be external. A

symbol that is so declared can be used In much the same way as other SILT symbols. There are some
restrictions, however.

SILT Is not a complicated language .- in most cases, the designer should be able to figure out

exactly what geometry will be generated by any particular fragment of code, It has no powerful built.
in primitives such as "insert 16-bit ALU" or "route signall<0:15> to signal2<16:31>". The "16-bit

ALU" may exist in a library, but the user will have to do the routing for the second example. There are

only a few features found In SILT that are not found in some other language SILT primarily makes a

convenient set of features available within a single language,

1.2 The Implementation

At present, two programs exist for the conversion of SILT to CIF and back again. Both are written

* in PASCAL. The CIF to SILT converter should be quite portable, but the SILT to COF program is based

on Hennessy's parser generator (see [2]), so porting the SILT program would also require porting the

parser generator as well.

The code is written to run under both TOPS-20 and UNIX. Some minor changes must be made in

the code to transfer it from one operating system to another. The source code is the TOPS.20

version, but there are instructions for the edits that must be performed to make the UNIX version at

the'beginning of the file.

1.3 Using this Document

The easiest way to learn SILT (or any other programming language, for that matter) is by looking at

examples. A series of examples is provided in appendix I. The exact syntax for SILT can be found in

appendix II, which includes pointers back into the document for discussions of the a3sociated

semantics. Finally, there is a list of the SILT reserved words in appendix III.

0



1.4 Using SILT

0 SILT currently runs under TOPS.20 (Hedrick's PASCAL) and BERKELEY UNIX (BERKELEY

PASCAL), The procedure for using It is similar in both cases, In the TOPS.20 version, when the

program starts up, the user will be asked for the name of an Input file and an output file. The Input file

is the SILT source, and the output file will contain the CIF generated. No default extensions are

assumed, so the whole file name must be typed in both cases, Any errors encountered are printed out

on the terminal. The general philosophy followed by SILT is that It attempts to recover from as many

errors as possible. Thus, when the input file contains errors, SILT Is not guaranteed to work and run-

time errors occasionally occur, The hope Is that enough error diagnostics are generated so that the

user can correct the errors and try again.

For the UNIX implementation, the standard input and output are used, and most of the errors are

recorded in a special file called "errors". A few messages are sent to the terminal, As in the TOPS-20

version, the entire file names must be specified. The standard extensions that most people use are

".sit" for SILT files, and ",cif" for CIF files.

When the UNIX version is used on the VAX, SILT files can be used with the "C" preprocessor, The

SILT assembler does not itself call on the preprocessor, but it ignores any lines beginning with the

character "# ". The main use of this is for the inclusion of files.

0
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A graphical front-end for this language can present the symbol on the screen together with the

* relative points. In addition to the usual commands for adding, deleting, and moving rectangles, the

user can add, delete, and move the relative points, When a relative point Is moved, all associated

geometry Is adjusted, The graphical editor must also include commands to associate edges of

rectangles with relative points.

In fact, two graphical SILT-based editors have been written. The first was purely experimental,

called ALE (see (4]), and was used to experiment with various techniques to Interract graphically with

SILT constructs, Later, based upon the ALE experiences, another editor, called YALE (see [1]) has

been implemented on the SUN workstations. YALE does not implement all of the features of SILT, but

does implement the more important ones. All of YALE's input and output Is done in a subset of SILT.
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3. Names and Data Types
0

3.1 Names and Scoping

All user-defined names in SILT begin with a letter and are followed by any number of letters, digits,

or the underscore character ("." = ASCII 137B). No case distinction Is made, so "AbC5" and "abC5"

represent the same name, Users may not use any of the SILT reserved words, which are listed in

appendix Ill.

SILT's scoping rules are similar to those in PASCAL, with one important exception. If SILT's

symbols are thought of as PASCAL procedures or functions, then the variables visible with a gi%,en

nesting of symbols would be the same ones visible within the same nesting of PASCAL procedures,

The exception is SILT's export mechanism. This allows a symbol to make a certain set of internally

defined symbols visible outside it, This topic is fully discussed in section 3.5.

Future versions of SILT may not allow such complete freedom in nesting functions and in the scope

of names. For efficiency, every time SILT expands a symbol, it keeps track of the parameters passed

to the symbol and to the CIF code produced. Every time the symbol is expanded, a check is made to

see if it has been expanded before with the same parameters. If so, no expansion is done, and a

pointer to the already expanded symbol is returned. If a symbol depends on variables not in the

parameter list, errors will occur. Future versions of SILT may not allow nesting of functions, and will

thus have only two kinds of variables -- local and global. Thus, it is not recommended that full

advantage be taken of SILT's nesting mechanism.

3.2 Variable Types

SILT deals with four basic kinds of variables: x. and y-relative points (described in the previous

chapter), scalar values and signals. These are declared as xvar, yvar, scalar, and signal, respectively.

Variables of type xvar, yvar and signal are simply stored as a single real number, but signals are more

complicated. A signal is a collection of triplets, where each triplet consists of an x- and y- coordinate

together with an optional process layer (metal, diffusion, polysilicon, etc.).

Scalars are meant as a catch-all to include such things as iteration variables, pull-up ratios, and

power requirements. Scalars are not altered when a symbol is transformed (x-relative points are

changed to y-relative points when the symbol is rotated 90 degrees).

0
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Signals are meant to be used to identify particular points of the geometry so that various

constraints can be checked, A user may, for example, insist that point "a" of signal "b" be

connected to point "c" of signal "d" (see 5.12), Signals are transformed as a pair of relative points

when their symbol is transformed. Vectors of signals such as "addr<0:23>" can be declared, and one

can refer to the components of particular signals with expressions like "ajin.x" or "addr(O>.y". The

reason that a signal consists of possibly more than one triplet of values is that the same electrical

signal is often available at different points within the symbol. When one asks to have one signal

connected to another, it does not matter to which of these points a connection is made. This is

especially useful for symbols that have a bus passing through them, and hence each signal on the

bus will be available at both ends of the symbol.

All the variables described above can be combined in the usual way with arithmetic operations and

constants. SILT makes no checks to ensure that the expressions formed make sense -- it will

cheerfully allow the user to multiply relative points or to subtract an x-relative point from a y-relative

point.

All numbers in SILT are stored internally as real values, and thus division does not round. SILT also

has the integer functions "div" and "mod". "x mod y" is evaluated as "float(round(x) mod

round(y))", and "div" is handled similarly. Following are a few examples of valid SILT arithmetic

expressions:
abc 4. (power'width)
(q mod r) - xyz / (7.3*((p+q) div r))

In addition to "f.+ ", ".", "I" , /", "div", and "mod", SILT includes an (experimental) function

"bitop" (standing for "bit operation"). It is a function of two integers (which are produced by

rounding as for "div" and "mod", above), and allows one to determine whether a given bit in the

binary expansion of a number is "I" or "0". "bitop(number, bitposition)" yields the numeric value 1

or 0. The least significant bit is number zero, so "bitop(5,0)" yields 1, "bitop(5,1)" is O, and so on.

In a sense, SILT also deals with boolean values, although there is no way to save such a value in a

variable. Arbitrarily complicated boolean expressions like "a > = b AND ((NOT b> = 7) OR (c + e < =

d))" can be formed and used in both conditional statements (see section 5.8) or constraints (see

section 4.5). At present, the comparitors "Y" and "<" are not available because of some restrictions

of the parser, but they can be implemented using "NOT" with "> = " and "% I.

0
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3.3 Symbol Names

All the geometry in a circuit is defined in terms of symbols, the bodies of which are made up of

primitive calls and calls on other symbols. Symbols may be defined within other symbols, and

symbols so defined are "local" to their containing symbol. Locals within different symbols may have

the same names.

The entire SILT file can be thought of as a distinguished symbol that is different from other symbols

in that it has no parameters and that it is automatically expanded once at (0, 0). The "file" in SILT is

to its symbols much as the "program" in PASCAL is to its procedures,

3.4 Instance Names

A single symbol can be instantiated many times, and any number of particular instantiations may be

named It is common to lay out one- or two-dimensional arrays of symbols, so SILT allows array-like

instance names. A symbol call is named if it is preceded by an instance name followed by "::". For

example, if "foo" has been declared as a symbol, then it might be instantiated in the following ways:
place foo() at ... ( no instance name here )

a:: place foo() at ...

b[2]:: place foo() at

for i := 0 to 7 do
for j := 0 to 7 do

c[i,j]:: place foo() at ...

In arrays of instances, the indices are rounded to the nearest whole number(s). No instance names

(including arrays of instances) need to be declared ahead of time. An array of instances must all

correspond to the same symbol, although the symbol in question may be called with different

parameters in each instance.

3.5 Exports

All variables defined within a symbol are local to the symbol, unless they are specifically exported

using an export declaratipn. Information exported from a symbol is visible only within the symbol that

called it. Thus only information that is in some sense important is visible outside a symbol. If symbol

"a" calls symbol "b" and symbol "b" calls symbol "c", then the exports of symbol "c" are not

automatically visible in the body of symbol "a" urless "b" also specifically exports them. The

example in Figure 3-0 below illustrates the code required to make "c"'s export visible inside symbol
0"a" (as b.inst.c.-export):
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Tho typtni of things thlat Lre exported often Include some subset of the relative points, certain

*'onnoctton ipoints (signals), power requirements, and information about the size of the cell, The size

of th1 c'll Is azutomatlcally exported even If the user does not specifically ask for It ("xmin", "xmax",
"ymln" Lnd "ymax' are the values automatically exported). The example that follows illustrates the

method for accesing exported names. If a symbol Is placed without an instance name, its exports

aro not accesaible.

Figure 3-1: Exporting values

4ymbo) c( );
scalar' Cexport;
export c_oxport ;

symbo I b(
scalar' cexport;
export c export;

bogin
C¢inst:: place C() at (0, 0);
c-export :a c-inst~c-export;

end;
symbol A()

begin

blinst:: place b() at (0, 0);

end;

*l 3.6 CIF Names

SILT also has a provision for passing certain names to the CIF file produced. These names can be

attached to a point and optionally to a layer. See section 5,9,
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4. Symbol Declaration

Every SILT symbol (including the entire SILT file itself) has a header, a series (possibly empty) of

declarations, and then a list of symbol commands. This chapter discusses the header and

declarations of a symbol definition.

SILT input is free-form in the spirit of PASCAL. Spaces, tabs, and carriage-returns can appear

anywhere except within an identifier or a reserved word.

Comments can be imbedded anywhere in a SILT file where a space could appear, and are made up

of arbitrary text, surrounded by "(*" and "*)". Comments may be nested, making it possible to

comment out arbitrary chunks of SILT code.

All symbols must be defined before they are used -- there is nothing that would correspond to a

PASCAL "forward" declaration. Instance names need not be declared ahead of time, but all other

variables must be.

4.1 Symbol Parameters

It is possible to pass any number of relative point values to a symbol via the parameter list. SILT

also allows the user to pass other values to a symbol, such as scalars representing power

requirements or pullup ratios. Each parameter should have a default value associated with it that is

usually chosen to produce a cell-of minimum size. See section 4.4. Since the minimum cell is usually

what is desired, parameter specification will be the exception rather than the rule. For this reason,

both key calls and positional calls are implemented in SILT. If the symbol foo has a header that looks

like:
symbol foo(xvar xO, xl, xZ);

Then the following two forms are valid calls on the symbol:
place foo(xO03, x2=15) at (0, 0);
place foo(3, 4, 18) at (0, 0);

In the first case, xl will get the default value, whatever it is. In the second, xO, xl, and x2 would be

assigned to 3, 4, and 18, respectively.

0
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4.2 Declaration of Variables

The symbol header is followed by an optional constant declaration and then a series of variable

declarations. Constants serve the same purpose as constants in PASCAL, and their values cannot

change after their initial declaration. A constant declaration might look something like:
constant a := 1; b := 5; c3po := 11.38;

Any variables that are to be local to the symbol are declared next as in the following example:
xvar xO, xl, x2;
yvar yO;
scalar power, indx;
signal a. addr<0:23>, vdd, gnd;

The variable declarations may appear in any order.

4.3 Exports

Any variable declared within a symbol can be exported by including its name in an export

declaration. In addition, variables from the parameter list can also be exported. (This last is not so

silly as it seems .- since various defaults may be taken, the user would otherwise have no easy way to

find out some of the relative point positions.) As was stated before, every symbol effectively includes

the following:
xvar xmin, xmax;
yvar ymin, ymax;
export xmin, xmax, ymin, ymax;

The general export declaration looks exactly like the example above. If a signal vector is exported,

only its name is necessary -- the size has already been declared. The following example illustrates all

the possibilities:
symbol foo(yvar y9);
xvar a, b;
signal c, d<0:5>, e;
export a, c, d, b, y9;

4.4 Defaults

A default declaration is made up of a list of assignment statements that are interpreted in a special

way, The left-hand-side,(LHS) of an assignment must be a member of the formal parameter list, but

the right-hand-side (RHS) can be an arbitrary expression. The only constraint is that all variables in

the RHS must be known by the time the expression is evaluated. A typical set of default values (in this

case for Figure 3-0 above) will look something like this:
defautt xO := 9; x1 := xO + 6; x2 := xO + 9; 03 := xt + 17;
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The form above rlakes the relative relations among the points clear .. xO is relative to the origin, xl is

relative to xO, and so on.

SILT expands a symbol's parameter list by going through the default declarations in order, and if

the LHS variable is unknown, then the RHS is evaluated and assigned to it. If the LHS is known, SILT

advances to the next assignment in the default list, If the symbol having the default declaration in the

last paragraph were called with xO= 8 and x2 = 11, then the symbol would be expanded with xO =8,

xl = 14, x2= 11, and x3= 31.

4.5 Constraint Declarations

It is possible to declare within any symbol a set of constraints to be checked when the cell is

instantiated, A constraint is entered as two arbitrary expressions separated by "< =" (less-than-or-

equal), "> = ", "0>" (not-equal) or "= ". Various information about design rules, power requirements,

or anything ol3e can be included. SILT makes no attempt to force the constraints to be satisfied -- it

simply warns the user of a possible error if a constraint violation occurs.

Al the boolean expressions in the constraint list are evaluated after the default list has been

procussed. If errors are discovered, the user is warned, but the SILT assembly continues. SILT

makes no attempt to stretch or shrink geometry to force the constraints to be satisfied -- it merely

prints a warning if there is an error.

4.6 Symbol Definitions

After any combiration of the above declarations, any number of local symbols may be declared.

The program fragment below gives the form of a complete symbol definition, where the "..." is

replaced by any number of symbol commands which will be discussed in chapter 5.

symbol foo(xvar xO, yvar yO, scalar bar);
constant constt :v 7:
xvar x loc;
signal sig<O:7>;
export xO, x loc, sig;
default xO :A 5; yO := 7;

scalar := xO - yO + 2; (" legal, but senseless )
begin

end ;

0
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5. The Symbol Body

A variety of commands are available within the body of a SILT symbol. Each is discussed In detail

in the following sections.

5.1 Primitive Calls

At present, there are three types of primitive calls available in SILT. These include contact cuts,

butting contacts, and boxes (rectangles).. The calling sequence for each of the above types is similar

to the calling sequence for general symbols, but there are a few restrictions. In most of the examples

in this document, the word "place" has been put in front of each call on either primitive or user;

defined symbols. It is optional, and simply serves to make the SILT text easier to read.

Without too much difficulty, it is possible to add other primitive symbol types to the language,

should they prove to be important.

5.1,1 Box Calls

The following three examples illustrate possible box calls:
place box(l, 4) at (xO+5, y7+wirewidth/2);
place box (xl-xO. 4. poly) at (0, -23);
box (1,4) at (4, 5); (* "place" is not required *)

The first two parameters enclosed in parentheses after "box" are the x.length and y.length. If there

is a third parameter, it must be a layer in the set {metal, poly, diff, implant, contact, buried). It

indicates the layer upon which a particular box is to be placed. If no layer is indicated, then the

default layer (from the "with" command -. see section 5.7) is used. If the box command appears

without a layer specification, and is not within the scope of a with command, then an error occurs.

The last pair of numbers are the x- and y- coordinates of the lower left corner of the box. None of

the other transformations (described later) may be applied to a box call.

Box calls cannot be given an instance name.

An alternative form of the box command can be used that substitutes the word "to" for "at". A

typical call might look something like this:
place box (1. y 3 +17, poly) to (7, y3+ 2 2 );

In this form, the first pair of numbers serve as coordinates for the lower-left corner and the second
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two as coordinates for the upper-right corner, This form makes It much easier to see exactly which

reference point is associated with each edge, and hence provides a much better graphical interface.

5.1.2 Contact Cuts

Contact cuts come in two flavors -- one connects metal to poly, and the other connects metal to

diffusion, A contact cut may be placed as follows:
place cut(poly) at (3, 6);
place cut(dirf) at (3, 6);
place cut() at (0, 0);
place cut at (0.0);

In the third and fourth examples, the layer Is chosen in the same way as it is for box calls. If the

layer is not in (poly, diff) then an error occurs.

The cut symbol has its origin at the lower-left corner. It can be rotated and flipped, but it is not

really necessary for this symbol. See section 5.2.

Contact cuts calls cannot be given an instance name.

5.1.3 Butting Contacts

The butting contact symbol has only one type -- the standard Mead-Conway butting contact (see

[3]) oriented horizontally with the diffusion on the left. The origin is at the lower-left corner, and when

the cell is placed, any standard transformation can be applied to it. (See the next section for a

discussion of transformations.)

Since there is only one type of butting contact, the calls must look like one of the following two

examples:
place butt() <transformation>;
place butt <transformation>;

Like contact cuts and boxes, butting contact calls cannot be given an instance name.

5.2 Transformations

Every symbol that is either user-defined or built-in (butting contact, contact cut) has an origin at the

point (0, 0). For the built-in symbols, the origin happens to be at the lower left-hand corner, but this

need not be the case for user-defined symbols.
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Three different kinds of transformations are allowed: translation, rotation, and reflection, Rotation

* always takes place about the origin and reflection through either the x. or y. axis. Since all geometry

is constrained to be parallel to the coordinate axes, rotations can only occur In multiples of 90

degrees.

Any sequence of translations can be applied to a symbol, applied in the order in which they appear

in the SILT description (left to right). The order Is important .- a rotation followed by a translation is

much different from the same translation followed by the rotation.

Rotations are defined relative to a standard clock face (this idea comes from the CLL language).

Imagine the origin of the symbol at the center of a clock face with an arrow super-imposed on It

pointing to 12 o'clock. A rotation of 3 leaves the origin in place, but rotates the arrow so that it points

to 3 o'clock, and so on, The only rotations allowed are 3, 6, and 9. The syntax for a rotate command

is something like "rotated 3".

Reflections are either up-down (up-down means along the y-axis, or across the x-axis) or left-right.

The syntax for a reflection must be one of: "flipped ud", "flipped Ir" or "flipped rl". The last two are

equivalent.

A translation has the form "at (xjtrans, yjtrans)". This has the effect of translating the origin of the

symbol to the point (x~trans, y~trans).

A complete transformation is made up of any number (including zero) of the above, optionally

separated by commas. If no transformation is given, the symbol is placed at (0,0) in the standard

orientation. Supposing that the symbol "foo" has already been declared, the following are valid

symbol calls on "foo":
place foo() at (0. xO+7);
place foo() flipped ud, rotated 3 at(O,0);
place foo() at (5, -3) flipped ,ud;
foo at (4, 6);
abc:: foe;
fooinst:: place foo(power=3) flipped ud at (0, 5) rotated 9;
place foo() rotated 3;
place foo() at (3, 4) at (7,6);

The next to last example above places the rotated cell at the origin, and the last one is equivalent

to:
place roo() at. (10, 9);
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5.3 Symbol Calls

0A call on a user.defined symbol must appear after the symbol has been defined. If desired, the call

may be preceded by an Irstance name, followed by "::". Only labelled instances can have their

exports referred to later.

The parameter list is optional, and it it is omitted, all the default values will be taken. Parameters

may be specified either by a positional call or a key call. If it is a positional call, the parameters are

listed in the order in which they appeared in the symbol declaration. If it is a key call, the form is:

<formal parameter name> "s" <actual parameter>

All calls are by value, not by reference. Following is a short list of examples of symbol calls. Assume

that the symbol "foo" has already been declared:
a:: place foo(xl,5, y3-7) at (2, 3);
b[i+l]:: place foo(xlaxl, power%13) flipped ud at (3, -5);
q[t,j]:: place foo(xt1t,3) al (xO+q[i-l,J],xmax, 17);
place foo(in<O:3> a x0i3>);
place foo(l, 2, 3) at (3, 4);

In the second example in "xl = xl ", the "xl" on the left is the name of the parameter in "foo", and

the "xl" on the right is the value of "xl" in the calling symbol. It is impossible to tell (from the

* example) what variables get set to what values in the final example, since we do not know the order in

which the parameters were declared. See also section 4.1.

5.4 The Block Command

The block command is just a convenient way to group together a number of SILT commands for the

benefit of a with command, an iteration command, or a conditional command. The syntax is "begin",

followed by any number of SILT commands, followed by "end;". SILT blocks can be nested, if

desired. An example follows:
with poly do

begin
place box (1,2) at (3,4);
place box (3,4,difr) at (5,6);
place box (7,8) at (9, 10)
end.

1A warning is in order here, This is a moderately unusual construction, but there must be a space betwuen the "Y' and the

Otherwise, the lexical scanner will interpiet it as ">
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5.5 Iteration Commands

SILT contains a simple iteration scheme that behaves almost exactly like a simple form of the

PASCAL "for" statement. The following examples give most of the flavor of the command:
for i :- I to 8 do

for j :* I to 8 do
beg in
place box(1.1,metal) at (2"1, 20j);
place box(1,1,poly) 4t (2"1+1, 20J)
end;

In this first example, "I" and "j" must be declared (presumably as scalars, although they could be

of type xvar or yvar).
a&O]:: place foo(param=O) at (XO, 0);
for I :m I to 7 do

a~i]:: place foo(paramml) at (a(i-t].xmax, 0)6

The example above places 8 copies of the symbol foo side by side, (In this example, "foo" is

assumed to have xmin = 0.) The first instance of "foo" must be placed outside the "for" statement

so that the following instances can each refer to the instance to the left. All the instances could have

different widths, depending upon what "foo" does with "param".

If the intent is simply to place an array of identical symbols in a linear or rectangular array, use the

S array command, described in the next section.

5.6 The Array Command

SILT is a rich language, and it would be difficult to implement a graphical front-end that is capable

of taking advantage of all SILT's features. One of the more difficult features to implement in its full

genlerality is the iteration command discussed in the last section. Since one of the most common

things to do in VLSI design is to lay out an array of symbols, the array commands provide a restricted

form of iteration that can fully implemented by a graphical system.

The array command allows the user to place a linear or rectangular array of symbols at a given

starting point with a given spacing. All instances of the symbol must be identical. If no spacing Is

specified, the symbols are placed with x-separation xmax - xmin, and y-separation ymax - ymin. Some

examples of the array command follow:
place array a(0..7] of foo at (q7, b3+g);
array blat[O..3, 0..5] of foo(6.3-delta,8) at (43, ypos-6);
array bar[O..20) of foo() spacing (5,8) at (11,5);

S
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As In other placement commands, the keyword "place" is optional. The array dimensions are

* described PASCAL~style, and any sort of symbol call can be used after the keyword "of". If
"spacing" appears, it Is followed by a delta~x, delta-y pair, and the point following the "at" gives the

coordinates of the symbol having the smallest x (and y, if there Is one) coordinate. It is recommended

that this form be used instead of general iteration when It is possible so that the SILT generated can

be more easily handled by a graphics system.

The array command:
place array a&[O,7] of foo at (0,0);

is exactly equivalent to the command:
for i :* 0 to 7 do

ali]': place foo at (0,0);

except that the variable "I" is not present. One can, however, refer to such things as "a[3],xmin" and
"a[5].foo.output" in the usual way,

5.7 The With Command

The "with" command sets the default layer for one SILT command. That command may, of course,

be a block, so the "with" can extend over any number of statements. In the example in section 5.4,. the first and last boxes are placed in poly. If a box call has a layer specification, it holds only for that

box. "With" commands can be nested, with the following results:
with poly do

begin
place box(l,1 ) at (2,2): (0 set in polysilicon ")
with metal do

begin
place box(l,1) at (3,5); ( set in metal ')
place box(1,2,diff) at (2,3): ( set in difrusion .)
place box(t1, ) at (10, 11); ( set in metal 9)

end;
place box(5, 9) at (19. 20) ( set in polysilicon )
end.

Allowable layers for the "with" command include: "buried" (buried contact), "contact" (contact

cut), "diff" (diffusion), "implant" (implant), "metal" (metal) and "poly" (polysilicon).

5.8 Conditional Commands

A SILT conditional command is a simple "if.then" statement. It takes the general form:

if <boolean expression> then <SILT command>;

The boolean expression is evaluated, and the SILT command is expanded if it is true. There is no
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"else" clause .. use another conditional statement If this Is necessary, This Is not intended to be a

* heavily.used feature of SILT. It could be used to generate river.routing cells, for example, and to

decide which way a wire bends.

5.9 The CIF.List Command

The "CIF List" command attaches a name to a point (and optionally to a layer as well) In the CIF tile

generated, The CIF generated by this command is not standard CIF .- It Is the "94" user extension

used at Stanford and some other sites, The text Is listed in the plot, and at Stanford, at least, it Is

required to be a single Identifier (no spaces allowed), Examples of two typical ClF.Llst commands

follow:
clrflist "text" at (9, 10);
ciltr lst "textl" at (10, 11, metal),

5.10 External Declarations

If libraries of symbols in CIF form are available, it is possible to make use of the symbols contained

in them in SILT using the "extern" command, The symbol that is declared external is assumed to be

absolute, and information about its minimum and maximum x- and y.values is not available. If SILT

encounters an Extern statement, an entry is made in a symbol file that contains the CIF number used

internally, the symbol name (used in the CIF file), and the file name. Extern declarations should be

intermixed with the rest of the symbol declarations in the SILT file. A typical extern declaration

appears below:
extern cifname "filename";

The information in the symbol file can be used to link together SILT and CIF files, either manually,

or with a program. At present, there is a linker that can link a single SILT file to any number of

ICARUS- produced CIF files.

5.11 Assignment Statements

There are a number of allowable types of assignment statements allowed in SILT. The right-hand-

side is evaluated, and is'assigned to the variable on the left-hand-side. An error occurs if the two

sides do not conform. Any variable that is stored as a single real number conforms to any other, any

signal conforms to any other, and any signal vector of length n corresponds to any other of the same

length, and so on. Following are a few examples of typical SILT assignment statements:
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8 :" ;

sig.x :M 7 + a;
Sigi :0 092;
slgvec<0:3> :a sigvecl<4:7>;
Siol :# metal;
siOl<2>,y :a 16;
slgvec<0:7> :, instslgout<0:7>;
sig<B> :a (1,2,metal), (3, 4), (6, 6, dirt).

All the examples above except for the last should be clear. In the last case, the fifth signal in the

vector "sig" is assigned a series of point-layer combinations. These are added to any sets of values

the signal may already have. If an assignment is made to a signal suffixed with a ".x" or ".y", or a

layer assignment is made, then if the signal has a point defined, its corresponding value will bo

replaced. If it has no value, a new slot is made. Thus, one can put in a new signal value as follows:
Sig.x - 5;
slg.y - 7;
Sig :' poly;

But if the command:
sig.x a- 8;

is given, a new signal point is not begun -, the value 5 is simply written over.

Assignments of the form:
sig :v (3,4,poly);

* always generate a new point instance.

It is legal, although probably bad practice, to re-use variable names as illustrated in the following

example:
I :- 7;
place box(i,i) at (0.0);
i := 9;

place box(i,i) at (10,10);

If assignments occur only once to each variable, the language becomes declarative. Future

versions of SILT may print warnings when a variable (other than an iteration variable, of course) is

assigned to more than once.

5.12 Connect Commands

The SILT connect commands are used to make sure that a signal point placed by one symbol call

coincides with a similar point in another symbol call. If a connect command is given, SILT simply

makes sure that the points in question do coincide. If not, an error message is generated, and SILT

continues to expand the file. Remember that a signal can correspond to many points. If two signals

* are connected (that is, an appropriate connect command appears in the SILT file), the connection is
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considered to be successful if any point from one coincides with any point from the other. If layers

* are specified as part of the point, then the layers must conform as well. SILL allows certain

combinations of layers for this purpose. metal_poly, for example, means that this point can be

connected to another point of type metal or poly.

Following are some simple examples of the use of the connect command:
connect a to b;
connect a.slgout to b.sigout;
for I :, 1 to 7 do

for J :* 0 to 7 do
connect aEi].sigout<j) to a[i-1].sigtn<J>;

In addition to the simple connect command illustrated above that connects a signal to a signal,

there is a sometimes more convenient form that makes sure that all the signals having the same name

in two instances are connected. This is useful if a bus passes through, and one would like to make

sure that all the bus signals are connected. Some examples follow:
connect all Instl to inst2;
for i :u I to 7 do

ronnect all instli] to instil-1];

5.13 The Route Command

The route command implements a simple river-router to connect one signal vector of points to

another. The points in the signals must include a layer chosen from {diff, poly, metal}. Both signal

vectors must be essentially parallel .. i.e. they must both be monotonic in the x-coordinates or both in

the y-coordinates. Some examples of the route command appear below:
route(sigl<0:7>, sig2<0:7>, 3, ud);
route(sigl<0:7>, sig2<8:15>, 4, 1r);

lI the first example, sigl<O> is routed to sig2<O>, and so on; in the second example, sigl<O> is

routed to sig2<8>. In the first example, the widths of all the routing wires are 3, and in the second

example, 4. The first example routes the wires generally up-down (the signal vectors are parallel to

the x-axis), and in the second example, the routing is from right to left. The endpoints of the wires do

not have to lie in a line. The points in the signal vectors mark the centers of the endpoints of the

wires, and the wire layer is determined by the layers of the endpoints. There is an example of the use

of the route command in I.
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I. Examples

Three examples appear below. Some of them are not done in the most efficient way, but are done

in a way that illustrates as many features of SILT as possible. All the examples are probably too small

to be realistic.

The first one is extremely simple, and is made up of a few calls on a symbol that consists of a few

boxes. It is intended to illustrate relative geometry. The second example illustrates the use of the

route command. It also illustrates a few other features of SILT.

The third is the inverter from the Mead-Conway text [3] with some stretch built into it. In this

example, the metal-metal distance can be altered, the input and output wires can be shifted up and

down, and the pulldown ratio can be altered. Four different cell configurations are illustrated.
file relativegeometry;
symbol three_bend(xvar xl, x2, x3; yvar yl, y2, y3);
default x - 4: x2 xl + 4; x3 x2 + 4;

yl := 2; y 2 :=yl + 4; y3 :y2 + 4;
begin
with poly do

begin
place box(2, y3+2) at (0, 0);
place box(2, y2+2) at (xl, 0);
place box(2, y1+2) at (x2, 0);
place box(x3 - x2 - 2, 2) at (x2+2, yl);
place box(x3 - x1 - 2, 2) at (xl+2, y2);
place box(x3 - 2, 2) at (2, y 3 )
end;

end;
begin
place three bend at (0,0);
place three bend(xl = 8, y3 15) at (20, 0);
place three bend(x2 = 15, yl 5) at (40, 0)
end.
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file pad router;
constant pad...size := 30;
scalar i;
signal wire~tar'get(0:7>i
symbol pad() ;
signal output;
export output;

beg in
place box(pad~size,,pad~size, metal) at (0,0);
output := (pad~size/2'.. pad..size. metal)
end;

symbol pad raft(scalar pad spacing);
signal pad..outputs(0:7);
scalar 1, padL.sep;
export pad~outputs;,

begin
pad~sep :=pad~size + pad~spacing;
for i :=0 to 3 do

begin
lower[i]:: place pad at (i*(pad~sep), 0);
upper[iJ:: place pad at (pad~sep/2+i*(pad~sep),

pad..sep);
end,

for i := 0 to 7 do
begin
if (i mod 2) =0 then pad~outputs<i> loweiji div 2).output;
it' (i mod 21) = 1 then pad~outputs<i> upper[i div 2].output
end;,

end-,
beg In
raft;: place pad...raft(pad~spacing = 10) at (0,0);
for i := 0 to 7 do

wire_.targetri> :=(100 + i*!.4. 200, metal);
route(wireotarqet(0:7>. raft.pad~outputs(0:7>. 4, ud);

* end.



28

Figure 5-2, River Routing Example

....................................

b ...nd. 0. 20 .0
C ....... bond 0.. 0...0020

s.a. ..0..
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mile in_c inver'ter;
symbol inv(xvar xl; yvar yl, y2; scalar p_ width);
xvar dirr ctr, dirf_edqe;
default yl := 5; y2 :- yl + 14;

p width := 6; xl := 12 + p..width - 6;
constraint p width >= 6; xl >= 6 + p.width;

yl >- 5; y2 >= yl + 14;
begin
dirftctr := 2 + p width/2;
diff~edge :2 2 + p width;
place butt rotated 9 at (dirf_ctr+2, y1+3);
place butt rotated 3 at (xl+4, y1+8);
with dirf do

begin
place cut at (dlffctr -2, 0);
plage cut at (dirf ctr - 2, y2);
place box (pwidth, yl+4 ) at (2.3);
place box (1,2) at (dlff'edge, yl+3);
place box (2,5) at (dlff edge+1, y1+3);
place box (xl-diffedge+l, 2) at (dlff-edge+3. yI+6);
place box (2, yZ-yl-7) at (diff_ctr-1, yl+7)
end;

with poly do
begin
place box (pwidth, 7) at (2. yl+6);
place box (4+p_width, 2) at (0, yl);
place box (2, y2+7) at (xl, 0);
place box (5, 2) at (xl+4, yl)
end;

with metal do
begin
place box (xl+g, 4) at (0.0);
place box (xI+9, 4) at (0. y2)
end;

place box(5, 10. implant) at (dirf_ctr-2.6, yl+4.5)
end;

symbol inv set();
begin
place inv() at (0,0);
place inv(p_width = 8) at (25,0);
place inv(pwidth = 7, y2t24) at (55,0);
place inv(x1=16, yl=) at (80, 0)
end;

begin
inst:: place inv seL() rotated 3 at (0,0);
place invset.() rotat6d 3 at (inst.xmax, 0);
end.

0
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Figure 5-3: Inverter Example
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11. Syntax

* expression -> term;
->express-ion '+' term;
->expression '-1 term;

term ->factor;

->term VI' factor;
->term '*' factor;
->term 'div' factor;
->term 'mod' factor;

factor -> unsibned~factor;
-> -' unsigned~.fector;

unsigned..factor ->'number';

->'(' expression ''

->value;

->'bitop' '(' expression ''expression ''

boolexp ->boolterm:

->boolexp 'or' boolterm;

boolterm ->boolfactor;

->boolterin 'and' boolfactor;

boolfactor -> primboolfactor;
-> 'not' primboolfactor;

primboolfactor -> '(' boolexp ''

->constraint;

instance -)instance~name;

->instance-name instance-qualifier;

sinipi e.variable ->variable~name;

->variable-name signal-coordinate;

tuffixocJ-variable -> simple-variable suffri~;

suffix >'.x',

instance-naine ->'ident';

variable-name ->'ident';,

v~alue -> instance '.2 simple...ariable;
-> simple~variable;
->instance '. suffixed-variable;,
-)suffixed-variable;

signal _coordinate -><'C expression ''
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signal-range -> '<' expression ':' expression '>';

signalvector -> variable-namne signalrange;

instancequalifier -> '[' expression ']';
-> '[' expression ',' expression ']';

symbol definition -> 'symbol' 'ident' formal parameter-list '1:

symbolhead
'begin'
symboltail
'end' ';';

-> 'extern' 'ident' 'string'
formalparameter-list -> '(' variable-list ')';

-> ;'' I'

symbol _head -> constant declaration
variabledeclaration
export declaration
default-declaration
constraintdeclaration
syrnboldefinition)list;

symbol _definitionlist -> symboldefinition.list symbol-definition;

constraintdeclaration -> 'constraint' constraint_list ';';

constraint_ist -boolexp;
->constraint_list ;' boolexp;

constraint -> expression'<=' expression;
-> expression '>=' expression;
-> expression '0' expression;
-> expression 'I' expression;

default-declaration -> 'default' default_list ';

constantdeclaration -> 'constant' constantlist '

constant_list -> constnt;
-> constant_list ';' constnt;

constnt -> 'ident' ':=' expression;

derault list -> default;
-> defaultlist ';' default;

Jefault -> simple-variable ':=' expression;
-> suffixed-variable ':' expression;
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variable-declaration ->variabie..list ';';

export-declaration ->'export' identjlist ''

variable-list -> variable_^ýpe list;
-> variable-list ' ;' variable~type~list;

variable_type..iist -> 'xvar' identjlist;
-> 'yvar' ident_ Iist;
->'scalar' ident.~list;
->'signal' *signaljlist;

signal -> 'ident';
-> 'icient' signalrange;

signal-..list ->signal;

->signal..list '21 signal;

ident-list *>'ident';
->ident_list ',' 'ident';

symbol~tail ->symbol _command;
->symbol _command ' symbol...tail;

silt-file -> 'file' 'ident'''
symbol ~head
'begin'
symbol _tail
'end' T *';

symbol-_command -> symbol~label '::' unlabeled..command;
-> unlabelecL-comimand;
-)box_call;

->box-to-call;

->butt_call;

->cut-call;

-)connect-command;

->assignment;

-)with-command;

->iterate_command;

)cif -l1ist-command;
->block -command;
-)conditional _command;
->route-command;

->array~conimand;

route-command ->'route' route-list;

rou~te. ist >'('vectored-.signal ','vectored_sig'al ','expression '
-)''vectored-signal '2vectored_signal '

expression ',' route-direction ''
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route-direction -) 'ud';-> 'irl'

-) '1r';

vectored-signal -) signalvector;
-> instance '.' signalvector;

ciflist-command -> 'ciflist' 'string' 'at' position;

unlabeled-command -> symbol-call;

blockcommand -> 'begin'
symbol_tail
'end';

symbol call -> 'place' 'ident' actual_parameter_list
orientationspecification;

-> 'ident' actual parameter_list
orientation.specification;

orientation-specification -> transformation_list;

transformation-list -> transformation;
-> transformation ',' transformation_list;
-> transformation transformation_list;

S actual parameterlist -> '(' key call_list ')';
-> '(' position-calljist ')';
-> '(' ')';
.-) ;

key-call-list -> keycall;
-> keycaIll_list ',' keycall;

positioncall list -> expression;
-> position call_list '.' expression;

keycall -> sinmpleyvariable '=' expression;
-> signal-vector '=' signalvector;
-> signal-vector '=' instance '.' signal vector;

position -> '(' expression '.' expression ')';

-> '(' expression ',' expression '. layer ')';

transformation -> 'flipped' 'ud';
-> 'flipped' 'rl';
-> 'flipped' 'Ir';
-> 'rotated' 'number':
-> 'at' position;

boxcall -> 'place' 'box' box parameters 'at' position;
7> 'box' box parameters 'at' position;



box~to~call -> 'place' 'box' box~pa;'ameters 'to' position;
*-> 'box' box..parameters 'to' position;

* ~box_parameters ->''box~size ')';
->''box~slze ',' layer ''

box~size -> expression*' expression;

butt~call ->'place' 'butt' orlentation~specification;
->'place' 'butt' '(' ')' orientation-specification;
->'butt' orientation~specification;
->'butt' '(' ')1 orientatlon...specification;

cut_call ->'place' 'cut' orientation~specificatlon;
-> 'place' 'cut' '(' ')' orlentation~specification;
->'place' 'cut' layer~parameter orientation~specification;
->'cut' orientation~specification;
-)'cut' '(' ')' orientation specification;
->'cut' layer'paraineter orientation~specification;

layer~pararneter -> '(' 'diff' ')';

layer ->'poly';

->'metal' ;
->'diff':

-)'buried':

-)'implant';

-)'contact';

->'retal-poly';
-)'diff...poly';

->'diff metal';
->'none'

assignment ->simple-variable ':'expression;

->suffixed-variable ':=' expression:
->sirnple~variable ':'layer;

->simple-variable ':'position~list;

-)signal-~vector ':'signal-.vector;

->signal-vector ':'instance '.' signal _vectorz

position..list ->position;

-)position_list ',' position;

connect-command -> 'connect' value 'to' value;
->'connect' 'all' instance 'to' instance;

with-command -> 'with' layer 'do' block~command;

iterate-command -> 'for' 'ident' ':=' expression 'to'
expression 'do' symbol~commnand;

conditional _command -> 'if' boolexp 'then' symbol~command;

* ~symbol _label -> instance;
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arraycommand -> 'array' 'ident' a_list 'or' a listcall
spacing 'at' position;

-> 'place' 'array' 'ident' a list 'of' a_list._call
spacing 'at' position;

a list -> '[' expression '..' expression ')';
-> '[' expression '..' expression

expression '..' expression 'J';

a-list-cafl -> 'ident' actual parameterjist;

spacing -) 'spaced' position;
->

S



Ill. SILT Reserved Words

The following idenlifiers are reserved by SILT. The only ones that may be a little surprising are "x"

and "y". "rhess are used as suffixes of points.

ALL AND .. ARRAY AT BEGIN
BITOP BOX BURIED BUTT CIFLIST
CONNECT CONSTANT CONSTRAINT CONTACT CUT
DEFAULT DIFF DIFF METAL DIFF_POLY DIV
DO END EXPORT EXTERN FILE
FLIPPED FOR GLASS IF IMPLANT
LR METAL METAL_POLY MOD NONE
NOT OF OR PLACE POLY
RL ROTATED SCALAR SIGNAL SPACING
SYMBOL THEN TO UD WITH
X XMAX XMIN XVAR- Y
YMAX YNIN YVAR

..
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Abstract
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1. Introduction

The YALE (Yet Another Layout Editor) layout editor makes hierarchical cell layouts on a SUN

workstation. It is meant to be used with the SILT translator. All the files produced and read by YALE

are written in the SILT language (see [3]). The SILT program translates these into a CIF format for use

with other programs such as design rule checkers, circuit simulators, and mask-making software.

1.1 System Overview

The YALE layout editor runs under the V Kernel (see [2]) on a SUN workstation, The V Kernel Is a

messape-based kernel supporting multiple prccesses of which YALE might be only one. Since the

current implementation of YALE is large, it is unlikely that too much else will be running on the

workstation at the same time as YALE.

To run YALE with any reasonably large layout at all requires more than the minimal 256K SUN

configuration. The more memory is available on the SUN workstation, the better YALE will work.

Even if YALE is the only program running under the V Kernel, there are two processes with which

you, as the user, must be familiar. One is the layout editor itself, and the other is the window manager.

YALE itself has no idea where its viewports are presented on the screen, or even how many viewports

there are. You are free to create more viewports opening on different parts of the cell being currently

edited, and to move these viewports around and to adjust their sizes and magnifications. There is

nothing special about YALE in this respect. Any process using the above-mentioned window

manager can do the same thing.

At any time during a session, all the keystrokes and mouse-clicks are directed either to the window

manager or to thie YALE, editor (assuming these are the only two processes running). Obviously, the

input is interpreted differently by the two processes, so if something surprising happens, make sure

that your input is going to the process you think it Is.

It is easy to tell at a glance whether you are typing to (or "mousing" to) YALE or to the window

manager. The shape of (lhe cusor changes, In both cases, the cursor is an upward-pointing arrow,

but for the window manager, it is shorter, and its lower half forms the letter "w".

There are really more than two processes running during a YALE session, but the (.,litor and the

window manager are the only two with which you need to deal. Other processes Include one process

that is busy watching the keyboard for input, and another that always watches the mouse.
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1.2 Starting Up

To load YALE, you must use the V Kernel ic'ider, called "Vioad". This Is done by typing "n Vload"

(note the capitalbzation here) to the monitor of the SUN workstation, After a while, this program will

respond with something like:

V Kernel Loader - Version 3.1 - 28 June 1982

Prog ram name:

Type in "Yale" (argain, note the capitalization), and press <CR> (<CR> stands for the carriage return

key). The system will respond by typing a few lines of exclamation marks, and finally with:

Type "c<CRY' ("c" stands for continue -- the reason that this step is necessary is that breakpoints

could be put in here), and the program will start,

Three initial viewports will be painted on the screen whose functions are described in the next

chapter, and you will be prompted for some startup inforriation in the tty viewport (which is positioned

initially in the lower-left hand corner of the screen).

1.3 Implementation

YALE is implemented entirely in the "C" programming language, and most of the internals of the

YALE editor, (almost everything save the display code) were thoroughly tested on a VAX before being

ported to the SUN workstation. Since most of it has already been ported once, it should not be too

difficult to port it again. All that needs to be written is another set of display routines.

Although YALE runs under the V Kernel, it does not make heavy use of its services. The V Kernel

provides a process to track the cursor, and to read the mouse and keyboard. The window manager

runs as a separate process, but ihis is not necessary, and in the initial implementation, it was part of

the YALE editor.

A reasonably clean separation of the editor part from the window manager part has been made to

simplify some experiments using YALE in a distributed mode - YALE will run on a VAX, and the

window manager and a display list interpreter will run on the SUN workstation.

In addition to the V Kernel, YALE makes use of the SUN rasterop (see [1]) package for the display

of rectangles and stipples on the screen, and of the leaf package (see [4]) for remote file access.
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2. User Interface

This chapter describes the general features of the user interface for both YALE and the window

manager. An attempt has been made to make the command Interaction similar for both programs.

Most of the conventions described below apply both to the layout editor and to the window manager.

2.1 Initial Viewports

When YALE starts up, it displays three viewports, One of these is called the tty vlewport, and is

used primarily for command feedback, error messages, and user type.in. It behaves exactly like a

glass teletype in that each line is typed at the bottom, and lines typed earlier are scrolled up.
Although the initial viewport is small, the tty window keeps 24 lines of text, and earlier commands can

be examined by calling on the window manager and enlarging the viewport.

The second viewport is called the status viewport, and contains some YALE status information.

Such things as the current file, the name of the cell being edited, x- and y- coordinates of the last

mouse click, the currently selected layer, and the default widths of the layers are presented. The

information here will be covered in more detail later. See.

The third viewport is the main YALE graphics viewport. This is where the currently open cell Is

presented. Most other YALE viewports will be graphics viewports, but views opening on different

portions of the cell being edited.

2.2 The Mouse

YALE and the window manager both receive most of their commands from the mouse. When the

mouse is held with its three buttons on too, the left-most mouse button is called number 1, the center

is number 2, and the right-most button is numbered 3. In some of the prompting that appears on the

screen, and in the documentation that follows, they are referred to as MB1, MB2, and MB3.

Some YALE commands require that more than one mouse button be pressed at the same time.

Since it is impossible to press the buttons at exactly the same time, the mouse input is interpreted by

YALE as follows: The interpretation begins when the transition is made from all buttons up to at least

one button down, It ends when all buttons are up again. All buttons depressed in the Interim are
recorded as part of the mouse event. Thus, as long as you have not released all the buttons, you can

always press another button. Because of this, if the mouse event is not yet complete, it Is always
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possible to press down all three buttons, and YALE takes advantage of this by defining a three-button

* push as aborting the command. If you accidentally press the wrong button and notice it before it is

released, simply press dowr, the other two buttons and then release all three, and there will be no net

effect.

In both YALE and the window manager, the general philosophy is to bind the most useful

commands to the left and center mouse buttons (MB1 and M12). All other commands are accessed

by one or more pop up menus, described in the next section. For both programs, the pop up menu

containing the rest of the commands is accessed by pressing and releasing the third mouse button.

The action of pointing to an object or screen position with the cursor, and choosing it with a mouse

button click is often referred to here as "bugging". One can thus "bug a rectangle" to select it, or

identify a viewport to move by "bugging it".

2.3 Pop Up Menus

Since there are only 7 mouse button combinations, even if they all were to be used, there are too

many YALE commands to go around. The same thing is true of the window manager, so only the

most useful commands are bound directly to mouse clicks, and the rest of the commands are invoked

using pop up menus. For both the window manager and for general YALE layout editor commands,

the pop up menu is gotten by using MB3 by itself. A menu containing a variable number of items

appears under the cursor at that point. To select a command presented there, move the mouse until

the tip of the cursor inside its box, and press any button. (In other words, "bug" the correct menu

entry.) Sometimes menus are two-level, so a second menu will appear for the sub-command. If you

invoke a menu by accident and do not really wish to select any of the commands in the menu, simply

move the cursor completely outside the menu and press any button.

Important! To get a pop up menu for YALE, you must press the third button while the cursor is in

one of YALE's windows. In this way, it is possible to use the window manager with more than one

process. If the third mouse button is pressed while it is outside any window, it will have no effect, On

the other hand, when your input is directed to the window manager, the main pop up menu (for the

window manager) can b, pressed at any time.
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2.4 Command Feedback

As each command is Issued, whether It Is clicked in with the mouse buttons, or accessed through a

series of one or more pop up menus, an English sentence is gradually built up in the tty viewport both

to show what command is being specified, and, where possible, the next input required of the user. If

there is ever any confusion about which command is being specified, the last line in the tty vlewport

shows what is going on and what is expected next.

There are a few abbreviations that are commonly used in this feedback in addition to MB1, MB2,

and M13 for the mouse buttons. These include:

Abbreviation Meaning

T: Type in textual data, followed by <CR>.

B: "Bug" an object or position on the screen by pointing to it with the cursor and
pressing (usually) MB1.

M: A menu selection of some sort is to be made. Move the cursor so that its tip is in
the correct menu entry, and press a mouse button. Some menus are special, and
have "typein" entry at the bottom. If this entry is selected, you will be asked to
type in the correct information, followed by a <CR>. This mechanism is used when
there is a set of common choices, but where you may wish to use some unusual
choice from time to time.

2.5 Typing in Information

From time to time, certain of the commands require that you type in some textual information -- the

name of a new cell definition, the name of a reference point, or the name of a file to be used for input

or output. When this happens, a prompt appears in the command feedback viewport, and you simply

type in the tex.t, followed by a carriage return. For new names, YALE obviously has no choice but to

ask you directly for the information.

On the other hand, since the most commonly typed text will be the names of cell definitions that are

already known (such as "expand cell named ... ", "create instance of cell named ... "), YALE keeps a

list of a few of the most recently referenced cell names. Thus, when you need to specify a cell name,

YALE puts up a Pop Up rmenu containing these most recently referenced cells. The last item i:n the

menu is always "Typein", and if that entry is selected, you will be requested to type in the name of the

definition as you would for any other text string.
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YALE automatically converts all typed input and all input from files to lower case (except, of course,

* for UNIX file names). You may type your names in using any case you wish, but YALE will print them

back to you in lower case only.

Usually, a mechanism analogous to the three-mouse-button abort exists for textual Input. When

YALE requests type-in, it is not looking at the mouse, so it cannot interpret a three-button abort.

When a name of some sort is required and you have committed to a typein, typing a <CR> with no text

aborts the command. This mechanism is not so universal as is the one using three mouse buttons.

2.6 The YALE Coordinate System

YALE (and SILT) work in a standard mathematical right-handed cartesian x-y coordinate system.

SILT allows arbitrary real coordinates, but YALE restricts the coordinates to be integers or half.

integers. When selecting a point on the screen, the nearest point with half-integer coordinates is

chosen.

The grid marks that can appear on the screen are always placed at distances that are equal of a

power of 2 times lambda. The exponent can be negative, however.
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3. The Window Manager

3.1 Displays and Viewports

During any session, there may be many distinct "universes" whose contents you may wish to view.

When YALE starts up, there are three -- the text shown in the tty viewport, the information shown in

the YALE status viewport, and the geometry of the cell being edited in the graphics viewport. If the

terminal is being used for other user processes, additional viewports may be required.

Each of these "universes" is called a display. A process may have zero or more displays

associated with it. (In particular, the mouse and keyboard watcher processes have zero.) In addition,

it may be useful to have more than one view of any given display. For VLSI editing, one ofter wants to

have one large-scale view of the cell being edited, and another zoomed-in view of the small region

being actively changed. For complex, long-distance wiring, it may be useful to have views of each of

the areas on the chip where the wires bend.

It is sometimes useful to make a distinction among the terms "display", "viewport", and "window",

especially between the latter two. The display contains all the objects in the universe of interest,

whether they are shown on the screen or not. The viewport is the physical area on the display screen

upon which objects are displayed, and the window contains the same information as the viewport, but

is described in terms of world (or YALE) coordinates instead of in screen coordinates. Thus, one

might move a viewport on the display screen, and one would center a window coordinate in the

current viewport.

Each individual view of a display is called a viewport, and occupies some physical space on the

screen. The window manager can change both the part of the display being viewed, and that view's

magnification.

The window manager can handle up to 8 different viewports. All must be rectangular and non-

overlapping. It is possible to shrink little.used viewports, so it is not impossible to make use of all 8

viewports occasionally. It can also be used to create more or fewer viewports associated with the

same display. Usually, however, 4 or 5 viewports should be all that are required. If the window

manager is someday modified so that it can handle overlapping viewports, all this may change.
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3.2 Entering and Exiting the Window Manager

When YALE starts running, all input is directed to the YALE layout editor. There are two ways to

get the attention of the window manager, and to begin directing input to it.

The easiest method is via a seiection from YALE's main pop up menu. Press MB3, move the cursor

to point at the entry entitled "Window Manager", and bug it. The cursor will change from a simple

arrow to a shorter arrow with the character "w" underneath.

The second method is to type the so-called "brain escape character", which is initially set to be

"tC" (control-C). The cursor will immediately change to its window manager form. The brain escape

character can be reset to something besides "'rC" using a command to the window manager (see

3.4).

The window manager is exited in only one way .- this is via a selection from the window manager's

main menu (again accessed using MB3). The menu entry is labeled "Return to YALE".

3.3 Zooming In and Out

The most useful commands that can be issued to the window manager are for zooming in and out

on the view. MB1 is bound to "Zoom In" and ME2 is bound to "Zoomn Out". These commands affect

only the viewport in which the cursor is displayed when the button is pressed, It is therefore possible

to have different viewports displaying the c'ý!' bein•.•--. ted with different magnifications.

When MB1 ("Zoom In") is pressed in ., , the -.1agnification in that viewport is doubled, and

the point at the tip of the cursor art-', ,. . .ars in thp center of the new screen. MB2 ("Zoom Out")

has just the opposite effect -. the magnitication factor is cut in half, and point at the tip of the cursor

arrow again appears in the center of the new view.

Notice that one can change the view without changing magnification simply by zooming out, and

then zooming in to a new center, and can thus be accomplished using two mouse clicks. If the cell

being displayed is complicated, however, it is probably easier to use the "Center Window" command

(described below), since the display is re-created after each zooming action.

In some viewports, zooming in and zooming out have no effect on the material displayed. This is

usually the case where the viewport is displaying some textual material. Neither the tty viewport nor

the status viewport are affected by these commands, but all the YALE graphics viewports are.
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3.4 The Main Window Menu

The main window manager menu is accessed using MB3. Each of the possible menu commands is

described in a paragraph below:

Create viewport. This command creates another viewport on the screen. The next two mouse

clicks are interpreted as opposite corners for the new viewport, and may be given in any order.

Finally, an existing viewporl is bugged to show which display is to be painted in the newly created

viewport. If an attempt is made to create a new viewport that overlaps existing viewports, the error

message "illegal stretch" will appear in the tty viewport.

Move Edge. To change the shape of a viewport, bug the "Move Edge" entry in the main window

manager menu, move the cursor to an edge or corner of a viewport, and press any mouse button.

Then move the cursor to a new screen position, and press the button again (remember that if all three

buttons are presed at any time, the command can be aborted with no effect). The viewport is redrawn

with its corner or edge moved to the second mouse position. Again, since viewports are not allowed

to overlap, a common error is "illegal stretch".

Move Viewport. To move a viewport rigidly on the screen so that it remains the same size and

shape, and continues to view the same display, bug the "Move viewport" command in the main

window manager mcnu, Next, choose a point of reference in the viewport to be moved, move the

cursor to that point, and press a mouse button. When the cursor is moved to a new position on the

screen, and a mouse button is pressed, the point of reference in the old viewport is moved to that

position. Usually this command is easiest to control if the reference point is selected near one of its

corners. The window manager makes sure that the viewport in its new position does not lie outside

th' screen boundaries, and that it does not overlap existing viewports. If an attempt is made to move

a viewport off the visible screen, its position is adjusted to put it entirely on-screen. If an attempt is

made to overlap another viewport, an error message is printed in the tty viewport, and nothing

happens.

Delete Viewport. This command deletes the viewport in which the cursor sits when the next

mouse button is pressed. Don't delete the last viewport on any given display, or you may have a hard

time getting back the view. This mis-feature should be corrected someday.

Center Window. This command allows one to change the view so that a new point in the display

is moved to the center of the viewport. Simply press a mouse button with the cursor in a viewport, and



10

the viewport will be redrawn with that point moved to the center of the new view. It was pointed out

earlier that exactly the same change can be affected using a "Zoom Out" followed by a "Zoom In"

command.

Redraw. From time to time, YALE or the window manager gets mixed up about exactly what Is on

the screen. This command simply causes the contents of all viewports of be redrawn from scratch.

When all the bugs are removed, this command will be, too.

Brain Escape. This command resets the window manager escape charactL ,ahich was initially

set to be tC). A new escape character is typed, followed by a carriage return. The only restriction is

that the character can not be "%" (See 11.1), but it is probably a bad idea to use printing characters

that you may wish to use for typing information to YALE. Since YALE has a built-in command for

accessing the window manager, this command probably has low utility. Other programs that will

eventually run under the V Kernel may have no idea that there is anything like a window manager, and

it is for them that this facility was included,

Toggle Grid. To aid in editing, it is sometimes useful to have a grid presented on the screen. The

grid points are always the same distance apart on the screen, so at different magnifications, they

correspond to different lambda-measures. After selecting the "Toggle Grid" option, you must then

show which viewport is affected with another mouse click. If the grid is currently displayed in that

viewport, it is turned off, and vice-versa. The grid may be toggled in any viewport, but it is probably

not too useful to display a grid in any but a graphical viewport.

Return to Yale. This command diverts all further type-in and mouse clicks back to the YALE

layout editor.
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4. Editing with YALE

The next few chapters deal with the YALE layout editor itself. This first chapter gives an overview

of the editing system, and the others describe in detail the commands that can be issued.

4.1 Yale Overview

Before going into a description of the meaning of each of the YALE editing commands, a short

description will be given of the various sorts of things that the YALE editor manipulates. What is

presented in the next few paragraphs is condensed, and an understanding of the SILT language

would be extremely useful. SILT is a powerful language for describing cell layout, and YALE deals

only with a small subset of the available SILT commands.

Because of this, it may be necessary to use a combination of YALE and hand-editing of the SILT

format files produced by YALE to deal with a complicated layout. All the basic cell layout can be done

with YALE, together with some hierarchical depth. If it is necessary to make use of SILT's river-

routing facilities, or of other higher-level features, they will have to be specified by hand, in SILT,

using the text editor of your choice.0
Each layout is defined in terms of a hierarchical set of symbol calls', with one symbol designated as

the master layout symbol. A general SILT file could have many different commands in the main file

body, but YALE restricts it to having a single symbol call in the main file body.

Each symbol is made up of rectangles, reference points, and calls on other symbols. See the SILT

documentation for a complete description of reference points.

The rectangles on the screen are represented with stipple patterns, the symbol calls are normally

expanded, and the reference points are displayed as labeled horizontal and vertical lines. In addition

to the user-defined reference points, another pair (the x- and y. origins) are also shown. In some

ways, these origins behave exactly as the other reference points, and in other ways they do not. The

main difference is that it is not possible to move the origin reference points. The origin of the cell is

the point where the origin reference points cross.

1 In this documentation, the term "symbol" and "cell" are used almost interchangeably. SILT uses the term "symbol", but

Sthe term "cell" is also widely used.
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A symbol instance is placed with its origin relative to a horizontal and a vertical reference point. A

* rectangle has its top and bottom edge relative to horizontal reference points and its left and right

edges relative to vertical reference points. For a symbol or rectangle edge to be placed "relative to a

reference point" means that it remains a fixed distance from that reference point. If the reference

point is moved, then all objects placed relative to it are moved as well. If both of a rectangle's vertical

edges are relative to the same vertical reference point, and the reference point is moved, then the

rectangle will be moved rigidly. If the edges are relative to different reference points, then the

rectangle will stretch or shrink if one of its reference points is moved without moving the other.

In SILT, there is really nothing analogous to the origin reference points, but they are required for a

reasonable graphical interface. The SILT code for a rectangle produced relative to the reference

points named "xref" and "yref" would look something like this:

place box(xref + 3, yref - 6, metal) to (xref + 11, yref + 1);

while a rectangle placed relative to the origin reference points would generate the following SILT

code:

place box(3, -6, metal) to (11, 1);

If "xref" and "yref" are moved so that they are coincident with the respective origins, the two lines of

SILT code would represent the same box.

4.2 A Typical Editing Session

Before going into detail about the commands available in the YALE editor, it is useful to give an

idea of how a typical editing session would be carried out. Let us assume that you wish to design a

new cell, and already have available a small library of SILT cells in a file on your VAX.

After loading the V Kernel and the YALE program, some initialization is required. You will be asked

for the name of the VAX with your files, your user name and password, and the name of the file that

contains (or will contain) the layout produced. After YALE has verified that the VAX is up, that the

user name and password are valid, and that the file exists (if the name is a new one, it is created), you

are left in a state where the input goes to the layout editor.

From now on, the procedure is to open one of the symbols for editing, to make changes to it, and

then to close it and open another symbol. Only the cell currently open can be modified.

Modifications take the form of adding or deleting rectangles, sub cells, and reference points. If a cell

is closed, then one of its subcells opened and modified, and the original cell opened again, all

instances of the subcell in the original cell will show the modifications.
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Cells are opened either with the "Expand Cell" command, or by creating them with the "Create Cell

Instance" command. Cells are closed simply by opening another cell. Having a cell open is not really

analogous to having a file open on a computer -- open cells are not particularly vulnerable. The fact

that a cell is open simply means that it is the one displayed, and to which modifications will be made.

There are not too many YALE operations that cannot easily be undone, except possibly deleting an

entire cell definition, and deleting all the selected items, when many of them are selected.

When a new symbol is created, it contains nothing but an x-origin and a y-origin. These behave

somewhat as default reference points. At any point during the editing, exactly one horizontal and one

vertical reference point is selected, and the selected reference point is shown by being displayed with

a bolder line. In a newly created cell, the x- and y-origins are the selected reference points. Any

geometry (rectangles and symbol instances) which is entered is placed "relative to" the currently

selected reference points -- that is to say, if the reference point is moved, the objects placed relative

to it will also be rigidly moved.

Rectangles that are to remain rigid when the reference points are moved are easily inserted -- just

make sure that the appropriate vertical and horizontal reference points are selected before inserting

the rectangle. If it is required that a rectangle stretch or shrink when some reference points are

moved (i. e. one edge is relative to one reference point, and the other edge is to be relative to

another), the usual procedure is to make sure that one of the reference points is selected when the

rectangle is inserted, and then to re-reference the other edge to a different reference point.

It is easy to see if all the internal symbols and rectangles are placed relative to the correct ,eference

points .- simply move the reference points around a little, and make sure that the components move

and stretch as they should. Any parts that do not can then be re-referenced.
I

As the editing proceeds, it is usual to make backup copies of the work from time to time. The first

time the "Write Backup" command is invoked, you will be asked for a file name and a name of the

master symbol. (The master symbol is usually the one corresponding to the entire chip. If there is no

master symbol, any symbol name will do.' After this, making a backup is simple .. just issue the "Write

Backup" command, and the old backup file will be over-written with the new version of the layout.

At the end of an editing session, the "Write Main File" command is usually given, followed by the

"Quit" command, YALE is aborted, and you are returned to the SUN monitor,
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4.3 The Status Viewport

0 Throughout a YALE editing session, one viewport is devoted to presenting the status of the

session. The meaning of some of the information in this window is obvious, such as the name of the

main input file and the name of the cell currently open for editing.

The most important feature of the status viewport is the set of seven small stipple pattern samples.

These are the stipple patterns for the various layers. Above each sample of the pattern is an

abbreviation for the name of the layer: "metl", "poly", "diff", "impl", "burd", "glas", and "cont"

standing for "metal", "polysilicon", "diffusion", "implant", "buried", "glass", and "contact cut",

respectively. Underneath each of these rectangles is a number indicating the default width of a wire

made of this material. If the default width for the metal layer is 4, this means that whenever the metal

layer is selected, all rectangles placed in the currently open cell will be made of metal, and will have

width 4.

One of the seven patterns is selected (outlined), and this is the layer that will be used by the "Add

Rectangle" command. To select another layer, simply move the cursor so that it points to a new

stipple in the status viewport, and depress a mouse button, The newly selected stipple should be

selected (outlined), and the previously selected layer should have its outline removed,

The default widths associated with each layer can also be changed. See 7.1, below.

Also in the status viewport are four entries labeled "x:", "y:", "dx:", and "dy:". Every time a mouse

button is clicked in a YALE graphics viewport, these values are updated. The "x:" and "y:" values

give the absolute position of the click relative to the origin of the cell; the "dx:" and "dy:" values give

the displacement from the last "x:" and "y:" values. These entries can be used to measure distances

within a cell, and to find out about where you are if the view is zoomed in so far that there are no

reference points visible.

Finally, there is an entry for the currently active repeat command. A few of the common commands

in YALE have the feature that although they must be specified using a series of menus originally, they

may then be easily repeated. The name of the most recently issued command of this sort appears

here.

To cause that command to repeat, simply depress the two left-most mouse buttons (MB1 and MB2).

Exactly what happens next is slightly dependent on the repeated command. The three repeatable0
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commands are "Delete Selections", "Create Cell Instance", and "Add to Selections". See 8.2, 6.2,

* and 8.1, respectively for details on how the repeat command will behave in each circumstance.



17

5. Adding Rectangles and Selection0
The addition of rectangles to a layout, and the selection of objects in a layout to modify are the two

most common operations in YALE. Thus, each is tied to a single mouse click. The exact action of

these two important commands is described in the two sections that follow.

5.1 Add Rectangle

At any point during the editing, there is a default layer for rectangles selected, and a default width

for that layer. Placing rectangles on the screen involves marking the two endpoints of the wire using

MB1. YALE figures out whether the selected points are more vertical or more horizontal and inserts

an appropriate rectangle. The first point selected is guaranteed to be the center of one end of the

wire. For example, suppose that MB1 is first pressed at the point having coordinates (15, 32), and is

next pressed at (43, 35). The change in the x-direction (28) is much greater than the change in the y.

direction (3), so the rectangle is assumed to be a horizontal one. Since MB1 was first pressed with a

y-coordinate of 32, this will be the y.coordinate for the center of the inserted wire.

If MB1 is pressed accidentally, placement of the rectangle can be aborted by pressing any but MB1

(in particular, all three buttons can be pressed, causing the usual abort to occur).

When a rectangle is inserted, all currently selected items are de-selected, and the newly inserted

rectangle is selected. This makes it easy to move it to the correct position or to delete it if it was

placed incorrectly.

The left and right edges of the rectangle are placed relative to the currently selected vertical

reference point, and the top and bottom edges are placed relative to the selected horizontal reference

point. If there is no cell currently open, an error message will be presented in the tty vlewport.

5.2 Select Item

To select an item, point the cursor at it, and press MB2. If the Item is a symbol Instance or

reference point, it is simply selected. If it is a rectangle, things are a bit more complicated. If the

cursor is in the center of the rectangle, the entire rectangle (all four edges) is selected. If the cursor Is

pointing to an edge, just that edge is selected. If the cursor is pointing to a corner, then both of the

edges adjacent to that corner are selected. In every case, all other currently selected Items are de-

* selected before the selection takes place. A selected symbol instance is displayed with a bold outline,

and a selected rectangle edge is likewise highlighted.
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Since objects may overlap each other in an arbitrary way, there must be some mechanism for

* disambiguating a selection that could be interpreted in more than one way. The disambiguation

algorithm is described below.

1. If there is only one object under the cursor, then that object is selected.

2. If there are no objects under the cursor, then YALE looks within a few pixels of the cursor
for nearby objects. If there is exactly one nearby object, then that is selected.

3. If there is more than one object under the cursor, or if there are no objects under the
cursor, but there is more than one nearby object, then the areas of all possible objects
are compared, and the object with the smallest area is selected. Reference points are
judged to have essentially infinite areas.

4. If there is still ambiguity (i. e. there are still two or more items with exactly the same area
and under the cursor),then the object with the smallest height-to-width ratio is selected.

5. Finally, if there is more than one object with exactly the same height and width of smallest
area under the cursor, a series of possibilities is presented in the tty viewport. A short
description of the object is given, and it can be selected by typing "y<CR>". Typing
"n<CR>" causes the description of the next possible object to be presented. As soon as
the user responds positively, that item is selected, and the selection is finished. If
"n<CR>" is typed in response to every option, then nothing is selected.

Note that it is still possible to construct an example where it is impossible to select a certain piece

of geometry. In particular, it will happen when a large object is completely covered by smaller

objects, as is the metal layer in a butting contact. If this happens, the only way out is to delete or

move the object(s) causing the conflict, select and deal with the object of interest, and then re-create

or move back the other objects. This should not happen often.

Exactly the same disambiguation algorihm is used with the "Add Selection" command, described

below.

The most commonly.used commands In YALE are the "Add Rectangle" and "Select" commands,

accessed using MB1 and MB2. All the other YALE commands are invoked through a series of one or

more pop up menus. The main pop up menu is accessed by pressing MB3. It presents 10 options

that are described in the following chapters. Most of the items in this main menu are really just

categories of commands, and simply bring up a sub-menu containing specific commands. A few of

the entries, however, are bound directly to commonly-used commands.
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6. Create commands

Selecting the "Create" entry from the main YALE pop up menu brings up the sub-menu of the

create commands. There are five entries in the sub-menu, including "Create Array", "Create Cell

Definition", "Create Cell Instance", "Create Copy of Cell Definition" and "Create Reference Point".

Each is described individually in a section below.

6.1 Create Cell Definition

This command creates a brand-new symbol (cell) definition. You are asked to type in a name for

the new symbol, and that symbol is created and opened. The newly created symbol will contain

nothing but an x- and y. origin, and will be presented in all YALE's graphical viewports with exactly

the magnifications that were there previously. If this command is accidentally selected, and it is not

desired to create a new cell definition, simply type a <CR> instead of a cell name. This aborts the

command as if nothing happened.

6.2 Create Cell Instance

This command inserts an instance of a previously defined cell within another. After selecting this

command, you next show which symbol is to be inserted (via the most-recently.used-cell pop up). If

you wish to place the symbol exactly as defined (no rotation or reflection), simply identify with MB3

exactly where you wish the origin to go. If the newly-inserted instance is to be placed with a rotation

or reflection, again show where it is to go, but do so with MB1. You will then be presented with a pop

up menu including such things as "flip Ir", "flip ud", "rotate 3", "rotate 6", and "rotate 9". "flip Ir"

and "flip ud" refer to mirrorings (through the origin) left-right and up-down, respectively. The

numbers in the rotate command are described in terms of a standard clock face. Imagine that in your

original symbol, the hour hand points straight up. "rotate 3" means to rotate that hour hand until it

points to the "3", and so on. Any combination of these transformations can be specified, and they are

done one after another to the symbol before it is placed. In practice, at most 2 are required. For

example, a "rotate 3" followed by a "rotate 6" would be exactly equivalent to a "rotate 9" selection,

but there is no easy way to specify the the combination of a "rotate 3" followed by a "flip Ir"

command.

When you are finished specifying the transform, choose the bottom selection from the menu. The

symbol will then be placed where the original MB1 was pressed.0
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As was the case with rectangles, the symbol instance is selected as it is inserted. In this way, if it is

placed incorrectly, it is easy to issue a "Move Selected Objects" command and adjust it to the correct

position.

The new symbol instance's origin (the intersection of the x- and y- origin reference points) is placed

relative to the currently selected reference points in the currently open cell. An attempt to insert P_

symbol when no cell is open results in an error message in the fty viewport.

One often wishes to repeat this command over and over -- inserting a series of symbol definitions.

Therefore, the "Create Cell Instance" command is repeatable. As soon as it is used, the "Rpt Cmd:"

entry in the status viewport is updated to show that the currently repeatable command is "Create

Instance". To repeat the command, simply press MB1 and MB2 at the same time. You will

immediately be presented with the pop up menu of recently touched symbol definitions, and from then

on, the command proceeds in exactly the same way as if you had gotten there by the usual path of

getting the main YALE pop up, selecting "Create", and finally selecting the sub-menu entry "Cell

Instance".

The "Create Cell Instance" command remains the repeatable command until another repeatable

command is issued. There are only two others -- "Delete Selections", and "Add Selections".

6.3 Create Copy of Cell Definition

General SILT allows cells to be called over and over again with different parameters. YALE will

eventually allow this, but now, although each cell definition may allow for stretchability, it can only be

called with one set of parameters. If you wish to use a cell definition in two places with different

parameters, you must make a copy of the cell definition, with a different name, and use that new

definition with the new parameter set.

To make a copy of a cell definition, use the "Create Copy of Cell Definition" command. You will be

asked to identify first the name of the cell definition to copy using the menu of recently touched

symbol names. Next, you must type in the new name for the copy. The command can be aborted In

two ways. You can bug outside the menu of most recently used cells, or you can type a <CR> when a

typein is requested,

After the copy is made, YALE assumes that you are going to want to do something with it, so the

previously open cell is closed, and the newly-created cell is opened and displayed in YALE's graphics

viewports.
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This command makes use of a scratch file on the remote host, so you must have a valid user name

and password to use it. A scratch file called ".yale scratch" is created there, and is only used during

the execution of this command. The file can be deleted at any time, although it will be small in

general, and can safely be left there.

6.4 Create Array

This command places a rectangular array of instances of the same symbol. At present, this

command is a bit clumsy to use, but it is easier than putting in the symbols one at a time. When the

command is issued, you are prompted in the tty viewport for the number of symbols to be placed in

the x- and y-directions, and then for the x- and y- displacements. After this information is provided,

you specify the position of the origin of the symbol in the lower left hand corner of the array. This is

done in exactly the same way as it is for the simple "Insert Symbol" command, using MB3 to insert the

members of the array in their standard orientation, and MB1 to specify a mirroring or rotation

transformation, or some combination of the two.

When an array of symbols is inserted, all are selected, so that the array can be moved or deleted as

a block if some error in spacing or placement was made.

If such an error is made, it is a good idea to correct it immediately, since The inserted array is not

considered internally by YALE to be an array, but rather a series of individual symbol calls. Thus

individual symbols in the array can be moved or deleted after the array is put in.

6.5 Create Reference Point

This command makes a new reference pcint. Reference points have a tree-like dependence, where

the x- and y-origins serve as the the roots of the two reference point trees. When a reference point is

moved, not only is all the geometry associated with it moved rigidly, but also all reference points that

are relative to it. Thus, when a new reference point is inserted, it is placed relative to another

reference point (which may be an origin).

After this command is issued, you are first prompted for the "parent" reference point (which is

identified by bugging it with a mouse click). After this, its screen position is identified in the same

way, and finally, the textual name for the new reference point must be typed in.
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7. Setting Defaults

YALE has a few default values that can be set by the user that affect the actions of some of the

editing and viewing commands. One of these, the default layer selected, has been described earlier.

Every time an "Add rectangle" command is issued, the rectangle is made of material from the

selected layer Ta select a layer, simply point to the appropriate stipple sample in the status viewport,

and bug it with a mouse click. The other two default settings are new, and are described in the

sections that follow. All are accessed initially by bugging the "Defaults" entry in the main YALE

menu.

7.1 Setting Default Rectangle Widths

Each of the layers (metal, polysilicon, etc.) has a default width associated with it. In other words,

when the default layer is set to be metal, and you insert a rectangle, the rectangle will be in metal, its

length will be determined by the placement of the mouse clicks, and its width will be determined by

the default width for the metal layer.

The current default widths for the various layers can be determined by looking at the number

* printed under the stipple samples in the status window. They can be changed using this command.

The "Set Default Widths" command is a multi-level pop up menu command. After bugging

"Defaults" in the main menu and the "Line Widths" entry in the sub-menu, another sub-sub-menu of

layers is presented. When one of these is selected, a fourth menu comes up that has as entries a set

of typical small numbers and a "type in" option. If the width you want is in this menu, bug it, and you

are done. If you need an unusual default width, bug the "type in" menu entry, and type in the number

you want, followed by a <CR>. The change takes place immediately, and the information in the status

window will be updated.

7.2 Setting Default Expansion Depths

In a complicated layout, when editing the top level symbol, you may not care about the internal

details of the sub-cells. Filling in all the wires and transistors may even tend to clutter the screen toc

much. Therefore, a method is provided to control the expansion depth when viewing a symbol.

The cell that is currently open is at level zero, as are the rectangles contained within it. The

* subcells of the open cell are, together with their included rectangles, at level 1. The cells and their

rectangles contained within these sub-cells are at level 2, and so on.
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Thus, if the expansion depth is set to zero, only the rectangles in the currently open cell are visible.

* Any sub-cells are simply indicated by an outline on the screen enclosing their name. All details of

their interiors are hidden. If the expansion depth is set to 1, the rectangles within these cells are

visible, but not the interiors of their sub-cells, and so on.

When YALE starts up, the expansion depth is set to a very large number (32767), so that essentially

everything is visible.

Changing the expansion depth is much like setting the default rectangle widths, described above.

After bugging "Default", and "Expansion Depth", you will be presented with a menu containing a set

of small numbers, together with an entry marked "all", as well as the usual "typein" entry. The "all"

entry sets the expansion depth to 32767, and the "typein" entry works just as it did in the "Set Default

Widths" command -- just type in the required depth, followed by a <CR>. This command takes effect

immediately, and the screen is redrawn with the new viewing parameters.

The default expansion depth affects all the YALE graphics viewports. Someday this should be

changed to work on a viewport by viewport basis.
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8. Select, Delete, and Move Commands0
8.1 Selection

To move or delete objects in a symbol definition, it is necessary first to identify what those objects

are. This is the purpose of the selection commands. The most commonly used selection command

has already been described, and it selects a new reference point, symbol instance, or set of rectangle

edges. If the selection is a symbol instance or set of rectangle edges, everything previously selected

is first de-selected. If the selected object is a reference point the old selected reference point (with

the same orientation -- vertical or horizontal) is first de-selected.

Add Selection. There can never be more than one reference point in each orientation (vertical or

horizontal) selected, but it is often convenient to select many rectangles and symbol instances at the

same time. This can be done with the "Add selections" entry of the sub-menu gotten from the

"Selection" entry of the main YALE menu.

After bugging the "Add Selections" entry, the next mouse click is interpreted in the same way as

MB2 is interpreted for a straight selection. The only difference is that previously selected items are

O not de-selected first.

Since it is common to use this command repeatedly to get many things selected at the same time,

the command is repeatable in the same way as was "Create Cell Instance". If "Add Selections" is the

current repeatable command, it is easy to use. Simply move the cursor to point to the object to be

selected, and press MB1 arnd MB2 at the same time. The object pointed to will immediately be added

to the selection list.

Select Ref. Pt. Dependents. The command to "Select Reference Point Dependents" selects all

the rectangle edges and symbol instances that are dependent on some reference point. Before this

happens, all other selected items are first de-selected. This command is most often used simply to

find out what the reference point dependencies are -- that the items are selected is merely a side

effect. The selection is a real one, however, and those items can be moved, deleted, and so on.

After bugging the entry for "Ref. Pt. Dependents", you are asked to bug a reference point, and it is

items relative to this reference point that are selected.

0



26

8.2 Deletion

Dolete Selections, There are three commands under the "Delete" entry of the main YALE pop up

menu. The most Important is "Delete Selections", which does just that .- all completely selected

rectangles (those rectangles having all four edges selected) and selected symbol instances are

deleted from the currently open cell. The deletion is permanent -. the deleted items cannot be

retrieved from something like a "yank buffer" that is present in some textual and graphical editors.

The "Delete Selections" command is repeatable, and you can use it to delete a series of objects by

Wlternately selecting an object with MB2, and then deleting the object by pressing MB1 and MB2

simultaneously,

Delete Cell Definition. The second delete command deletes an entire cell definition. This can

only be done if that cell Is called by no other cell in the layout. If this is not the case, an error message

appears In the tty viewport.

Delete Reference Point. Finally, there is a command to delete a reference point. After bugging

the "Reference Point" entry in the sub-menu, you wi!l be asked to identify a reference point by

bugging it. If the reference point has any geometry dependent on it, the deletion will not be carried

out, and an error message will be presented in the tty viewport. If this is the case, remember that

there is a command ("Select Reference Point Dependents", see 8.1) which will show all the

dependent geometry.

8.3 Moving

Move Reference Point. The main reason for having reference points in YALE is to move them

around to stretch and shrink cell definitions, This is done with the "Move Reference Point"

command.

To do it, first bug the "Move" entry in the main menu, then the "Reference Point" entry in the sub-

menu. Next, identify the reference point to be moved by bugging it, and identify its new location by

bugging the screen. The reference point, together with all associated geometry (symbol instances

and rectangle edges) should be moved rigidly along with it.

Move Selections. This command moves all the selected rectangle edges and cell instances rigidly

to some other position in the cell. The motion references all items to the currenuy selected reference

0
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point, but the dimensions of the moved objects all remain fixed, even if they were previously

* dependent on (placed relative to) two different reference points.

To use this command, bug the "Move" and "Selections" entry in the main YALE menu and in the

sub-menu, respectively. You will then be asked to show how one point will move (remember that

everything else moves the same way) by bugging its initial and then final positions. A common thing

to do is to bug one corner of a selected rectangle where it is, and then to bug the position to which

that corner should move. If all selected items are thought of as rigidly attached to the first point, the

move command is equivalent to translating that point with everything attached to the second moused

position.

Moving a collection of rectangle edges and cell instances does not de-select them. Thus, if an

error is made, and they are moved to the wrong place, it is eas% k. i,ive the move command again, and

adjust the position again.

When only one of a rectangle's edges is selected, and the "Move Selections" command is issued, a

somewhat surprising result can occur if the selected edge is moved so that it winds up on the other

side of the unselected edge from which it was before. YALE simply remembers that, say, "the right

* edge is selected", and when what was the right edge becomes the new left edge, YALE still

remembers that the right edge is selected. This situation does not often arise with normal cell

transformations.
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9. Input/Output

The SUN workstations do not have any local permanent storage, so all the data must be read from

and written to remote files. This is done using the ethernet, and the files are available from any other

ethernet host that provides remote file access, and supports the "leaf" protocol.

At the beginning of a YALE editing session, some initialization is done, including the opening of a

connection to such a host, the specification of a user name, password, and of a main file name. After

the initialization, all other input/output is done using the "Input/Output" entry in the main YALE pop

up menu.

There are three kinds of remote files used by YALE. the first is the main input/output file that

contains the current version of the layout being edited. Generally, this file is opened during

initialization, is read then, and is written at the end of the YALE editing session. There is only one

main input file used during a YALE session.

The second kind of file is the backup file. Whenever you give the "Backup" input/output

command, this backup file is over-written with the current contents of the YALE memory. The

previous backup version is lost. There is only one backup file used during a YALE session.

Finally, YALE supports (in a primitive way) library files. A library of cell definitions can be read in

and combined with the user-defined cell definitions. Once they are combined, a copy is permanently

kept in the user's layout file. Besause of this, the best way to implement libraries is probably as small

files, each containing only one or two library symbols. YALE has no restrictions on how many library

files may be read in.

Of the three file types mentioned above, the library files are opened in a read.only mode, and the

other two are opened in read-write mode. Errors may occur if the user you logged in as does not have

the appropriate access to the files in question.

In general, the input/output structure could be improved a lot. There are, however, enough

commands to do almost anything, albeit somewhat clumsily, Some of the defects can be remedied by

going in with your favorite text editor and modifying the SILT files on the machine providing remote

file storage.
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9.1 Initialization

When you begin a YALE session, some initialization must be done. You will be asked for

information about the main SILT file to be used for input and output. To find this out, YALE must

connect to a host, log you in, and read the appropriate file. You will be prompted in the tty viewport

(initially at the bottom of the screen) for a host (<CR> gives Shasta), a user name and password, and

finally a file name. Type each of these followed by a <CR>. After this, you may issue any of the

standard YALE commands.

If the file whose name you give in response to the request for the main file name does not exist,

YALE assumes that you wish to create a new file by this name, and does so.

If you give a null file name (i. e. just type <CR>), YALE will not try to open a remote file. Thus, if you

can experiment with YALE even if you do not have an account on a machine with an active leaf

server. Just type <CR> in response to the user name and password requests. obviously, if you do

this, you will have an empty layout, and will have to create everything from scratch. If you do this, and

then decide that you really want to save your edits, you can always re-initialize the connection - see

the next paragraph.

* The initialization commands are also available within an editing session as the menu entry

"Initialize", found under the "Input/Output" entry in the main YALE pop up menu.

9.2 Close Connection

This command closes the currently open leaf connection.

9.3 Read Library

When this command is issued, you are asked for the name of a SILT library file, and that file is

opened, and all the cell definitions contained therein are added to those in your layout.

9.4 User Name
r

The "User Name" command sends the remote system a new user name/password combination. At

any point, YALE only keeps track of one such combination, so if you use this command to read in a

library file, ycu had better use it again to connect back to the main directory if you wish to write out

Syour main file after editing.
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9.5 Write

The "Write" command writes out the contents of memory into the main file. If you have not yet

specified it, you will be asked for the name of the main symbol to be used. The symbol name you

select is added to the end of the SILT file produced so that it is the symbol expanded to create the

whole layout. For example, if you select "foo" as your main symbol, a line of the form:

place foo() at (0, 0);

is put in as the only symbol call in the main begin-end block of the SILT file.

The reason that the main symbol name is requested during each YALE session instead of inferring

it from the input file is that in this way it is possible to change it. YALE should be changed so that it is

usually inferred, but can be changed with a specific "Default" or "Input/Output" command.

9.6 Write Backup

The "Write Backup" command is exactly like the "Write" command above, except that the

information is written onto a backup file instead of the main YALE output file. The first time this

command is issued, you will be asked for the name of the output file, and if you have not yet specified

it, the name of the master symbol. After this information has been provided once, you will never be

asked for it again during that session.
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10. Miscellaneous YALE commands0
Although the chapter is entitled "Miscellaneous YALE commands", this does not mean that they

are not important. In fact, the commanda documented here tend to be extremely important. All are

accessed via only a single level of pop up menu.

10.1 Expand Cell

At any point in a YALE editing session, exactly one cell is open for editing. The "Expand Cell"

command opens this cell. You show which cell is to be opened using the most-recently-used pop up

menu mechanism. When a cell name is selected or typed in, the old cell is closed, and the new cell is

presented in all the YALE graphics viewports. Everything in the cell (except, of course, for the vertical

and horizontal origin reference points) is de-selected.

10.2 Re-reference

As each rectangle or symbol instance is added to an open cell, it is placed relative to the currently

selected horizontal and vertical reference points. For rectangles, both edges are so placed, so

without this command, there would be no way to make stretchable rectangles. The other common

use for this command is when it is desired to make a cell flexible in some position where it was

previously rigid. For example, suppose that it is desired to make a cell that was originally totally rigid

so that it is stretchable in the x-direction. To do this, simply add a vertical reference point, and re-

reference the items generally to the right to this new reference point. Move the new reference point

around a little to see if all the stretching is done correctly, and then do some more re-referencing to

correct errors.

The "Re-reference" command deals with the currently selected items, and leaves them in place,

but re-references them to a new reference point that is identified by bugging it. It is effectively exactly

the same as selecting the new reference point, and then "moving" all selected items by a distance of

zero.

10.3 Window Manager

This command is available to allow an easy transition to the window manager from within YALE

without requiring the user to take his hands of the mouse. It is exactly equivalent to typing the "brain

* escape character".
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10.4 Show Cell Definition Names

0 This command displays a complete list of all the cell definitions currently in the layout. The names

of the cell definitions are printed in the tty viewport, six to a line. The initial size of the tty viewport is

small, and if there are many names, or if there are long names, they will not all fit in the viewport.

Remember, however, that the tty viewport is like any other viewport on the display, and its size and

shape can be modified with commands to the window manager. Just because the lines of text are not

visible does not mean that they are not there.

10.5 Quit

The "Quit" command exits from YALE. It closes all open files on the remote machine, and closes

the connection. The user is then returned to the SUN monitor. No warning is given if the edits have

not been saved. In almost all cases, the next-to-last command is to write out the main file (see the

next chapter).

The "Quit" command must be confirmed with a "y<CR>" (or a "Y<CR>"). To abort the "Quit"

command, simply type anything else -- a raw <CR>, "n<CRY", or anything else. The editing session

will then continue as if nothing has happened.

0
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1 . Errors

11.1 The '%' Command

If YALE (or any other user process running with the window manager) gets totally hung for some

reason, there is an emergency abort that almost always works. Simply type the percent character,

and everything should halt, returning you to the SUN monitor. This is a last-ditch attempt, and

everything about the editing session is lost (except, of course, for any backup files that were written).

It works because there is a separate process watching the keyboard input, and even if some other

process is stuck in a loop, the keyboard process still gets run regularly.

Use this command instead of the usual break command, since this one shuts up the mouse. (On

some of the SUN monitors, the mouse is turned on by sending a command to the keyboard, and it

continues to transmit its coordinates until it is turned off. The break key does not turn off the mouse,

and the terminal is left in a useless state until the keyboard is unplugged or the terminal is powered

down.)

*) 11.2 SILT Parsing Errors

If all your editing is done using YALE, you should never have any trouble with this. On the other

hand, if you go in with an editor and edit the SILT files produced by YALE by hand, it is not too hard to

introduce syntax errors. YALE. tries to read the file containing errors as best it can, and to continue

after the error(s), but it will obviously sometimes be unsuccessful. There are many messages related

to SILT syntax errors, and they should be self-explanatory. All such errors will be written in the tty

viewport.

If such errors occur, the best bet is to go back to the original files and edit them until the errors go

away.

11.3 Running out of space

No matter how much storage is available, it is possible to make a layout that is too big for it. Since

YALE can run out of storage at totally unpredictable times, it is impossible to predict what the

consequences are. Some of the storage is not efficiently reclaimed, and thus after editing for a long

time, you may run out of space even though the layout has not gotten much more complicated.

Writing out the file, restarting YALE, and reading in the file again can sometimes help.
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Some mechanism should be created in YALE to cache data on the remote host, but this has not yet

. been done.

If the layout is just too big to deal with, YALE can be used to put together parts of it, and all the

parts can be combined by hand using SILT to wire together the pieces. The SILT translator, running

on the VAX, can handle very large layouts.

A warning about low free storage is hard to give, since a single YALE command can use up a large

amount of it. For example, creating a large array of symbol instances can chew up free storage in a

hurry. When free storage is exhausted, the message "Out of free storage" is put up in the tty

viewport, and YALE attempts to leave its data structures in a reasonable state, but this is not always

possible. The best advice is to back up your work frequently when you think that you may be low on

free storage.

1 1.4 Other Size Limitations

YALE has no absolute cell size -- a symbol can call as many rectangles as it wants. There is an

implementation restriction on the number of symbol calls that a given symbol can make. A single cell

* must contain less than 300 symbol calls, but it is not as simple as that. If symbols are deeply nested,

this number can be reduced. If, during an "Expand Symbol" command, the error "Too many symbol

calls" occurs, try reducing the number of symbol calls in symbols with a large number of them.

Another scarce resource is something called "Sun Instance Numbers". The number of these is a

compiled-in constant, so can be changed by re-compiling. Each cell definition, cell instance,

reference point, and rectangle has a Sun Instance Number. When an object is deleted, its Sun

Instance Number is returned to a pool of free numbers. Sun Instance Numbers are used to look up

quickly information about items displayed on the screen.

11.5 Bugs

Some of the error messages are prefixed by the word "bug". These should never be printed out. If

one is, please report it to the YALE maintainer, together with as much information about what was

going on as possible.

Reports of other bugs are also welcome.

0
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I. Window Manager Command Outline

This is a list of all the commands available in the window manager. Each command is followed by

the page number on which it is more fully described.

Zoom In (MBI) 8
Zoom Out (MB2) 8

Brain Escape Character 10
Center Window 9
Create Viewport 9
Delete Viewport 9
Move Edge 9
Move Viewport 9
Redraw 10
Return to Yale 10
Toggle Grid 10

% (emergency abort command) 36
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II. YALE Editor Commands

This is a list of all the commands available in the YALE layout editor. Each command Is followed by

the page number on which it is more fully described. Those commands followed by an asterisk (0) are

repeatable.

Add Rectangle (MBI) 17
Select Item (MB2) 17

Create Array (of instances) 21
Create Cell Instance (*) 19
Create Cell Definition 19
Create Copy of Cell Definition 20
Create Reference Point 21

Default: Set Default Width 23
Default Expansion Depth 23 ,

Delete Cell Definition 26
Delete Reference Point 26
Delete Selections (*) 26

Expand Cell 33

Input/Output: Initialize 30
S Input/Output: Close Connection 30

Input/Output: Read Library 30
Input/Output: User Name 30
Input/Output: Write 31
Input/Output: Write Backup 31

Move Reference Point 26
Move Selections 26

Re-reference Selections 33

Select: Add (to) Selections (*) 25
Select Reference Point Dependents 25

Show Cell Definition Names 34

Quit 34

Window Manager 33

0
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The Compilation of Regular Expressions
into Integrated Circuits

ROBERT W. FLOYD AND JEFFREY D. ULLMAN

Stanford University, Stanford, Calfornia

Abstract. The design of integrated circuits to implement arbitrary regular ekpressions is considered. In
general, a regular expression with n operands may be converted into a nondeterministic finite automaton
with at most n states and n transitions. Instead of converting the nondeterministic device to a deterministic
one, two ways of implementing the nondeterministic device directly are proposed. One approach is to
produce a PLA (programmable logic array) of approximate dimensions n rows and 2n columns by
representing the states of the nondeterministic finite automaton directly by columns. This approach, while
theoretically suboptimal, makes use of carefully developed technology and, because of the care with which
PLA implementation has been done, may be the preferred technique in many real situations. Another
approach is to use the hierarchical structure of the automaton produced from the regular expression by
the McNaughton-Yamada algorithm to guide a hierarchical layout of the circuit. This method produces
a circuit O(In.) on a side and is, to within a constant factor, the best that can be done in general.

Categories and Subject Descriptors: B. 1.2 [Control Structures and Microprog•rmming]: Control Structure
Performance Analysis and Design Aids-automatic synthesis, formal models-, B.7.2 [Integrated Circuits]:
Design Aids-layout; F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms
and Problems-routing and layout;, F.4.3 [Mathematical Logic and Formal Languages]: Formal Lan-
guages-classes defined by grammars or automata

General Terms: Algorithms, Design, Languages, Theory

Additional Key Words and Phrases: Regular expression, nondeterministic finite automaton, programmable
logic array, circuit area

1. Introduction

There are a number of projects, such as [4, 6, 13], whose goal is "silicon compilation,"
that is, the automatic layout of circuits from their behavioral description. These
projects tend to be oriented around the design of computerlike circuits, certainly an
important goal, but one that is analogous, in the software domain, to implementing
languages suitable for writing operating systems, but little else. It appears that the
"FORTRAN" of circuit implementation must be quite general-purpose, allowing us
to specify a great variety of different kinds of circuits and to implement anything we
can specify, with a fair degree of efficiency. .. ......... -.

---It is the purpose of this paperi to discuss only one possible component of such a
general-purpose language, a regular expression facility. Regular expressions are
capable of specifying any finite-state process, although they are not always as succinct

This work was supported in part by DARPA Contract MDA903-80-C-0102 and in pat by the National
Science Foundation under Grant MCS 79-04528. ..: '- -: .. : ." , - '
Authors' address: Computer Science Department, Stanford Univer' "y, Stanford, CA 94305.
Permission to &py without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
O 1982 ACM 0004-5411/82/0700-0603 $00.75

( Journal of the Auociatiou for CompuaI4 Maclinny, VoL 29, No. 3, July 1982, pp. 603-422.
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as other representations [3]. Fortunately, there is a common class of finite-state
processes for which regular expressions i.ppear very well suited indeed. In the
software world, lexical analyzers, which recognize the tokens (e.g., identifiers, key-
words) of a programming language, have been generated automatically from regular
expressions defining the tokens. Regular expressions also make a good language for
describing patterns to be matched by a text editor. Aho and Ullman [1] describe
these and other software applications of regular expressions.

In the hardware world, regular expressions may be suited to describing certain
controllerlike processes, where it is desired that we signal "events," where each
"event" consists of a sequence of significant input signals, perhaps interspersed with
arbitrary numbers of irrelevant signals. We shall later give fa design example for a
simple device of this sort. On the other hand, regular expressions are not very good
for describing counting processes. For example, the event "876 zeros" is most
naturally described by the regular expression 00.., 0 (876 times). Obvious techniques
for producing a circuit from this expression will only succeed in producing a unary
counter with 876 distinct memory elements, rather than a binary counter with ten
memory elements. Extensions to the regular expression language can alleviate this
problem somewhat, but the fact remains that regular expressions cannot be billed as
a panacea, even if we restrict our dohiain of interest to sequential processes. However,
they do represent a pr'omising approach to the-automatic design of some components,
and they probably 'ave a place in any general-purpose compiled circuit design
lanpuage.

2. The Circuit Model

To be specific, let us assume that circuits are implemented in the nMOS technology,
using the Mead-Conway [11] design rules. However, what we say applies to any
technology in which

(1) 2-input logical operations can be implemented in constant space;
(2) wires have a fixed constant width, and signals can be driven through the wire in

an acceptably short time by a driver no larger than the wire itself;
(3) there is a particular number of wires, at least two, that may occupy the same

area; the number 3 applies to the nMOS technology.

This model of integrated circuits is discussed in [2, 14], for example.

3. Regular Expressions and Nondeterministic Automata

We assume the reader is familiar with finite automata theory as discussed in [5], for
example, and we only sketch the essential details here. Regular expressions are built
from an alphabet I (in practice, I might be the set of ASCII characters, for example)
using the 4ollowing rules. '

(1) For each a in 1, a is a regular expression denoting (a), that is, the set consisting
of one string; that string is of one symbol, a. .

(2) 0 and E are regular expressions denoting, respectively, the null set and (e), that
is, the set consisting of the empty string (zero-length string) only.. :•c. : ... -

(3) IfRi aAd R2 are regular expressions denoting sets of strings S1 and S2, iespectively,
* then (RI) + (R2 ), (Ri)(R2), and (R1 )* denote S, U S2 , S 1 S 2, and St', respectively.
Here S1 S 2 is the concatenation of sets Si and S2, that is,

{xyjxESAy'eS 2}. " - :>' "..-
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Also, Si", the closure of Si, is

(E) U S U $1SI1 U SISIS 1 U

That is, (R)* means "zero or more occurrences of R."
(4) Parentheses may be dropped when they are implied by the following precedence

order: closure highest, then concatenation, then union. For example, a + bc* is
grouped a + (b(c*)) and stands for the set of strings

(a, b, bc, bcc, bccc, ... ).

Sometimes it is useful to extend the regular expression language in several ways
that do not affect the collection of sets of strings we can define. For example, LEX
[8], the UNIX lexical analyzer generator, uses . to stand for "any character," that is,
the expression a, + a2 + . • • + an, where the ai's are all the symbols in E. Also, (R)'
stands for the positive closure of R, that is, R + RR + RRR + • • •, or "one or more
occurrences of R." The expression (R)? means "zero or one occurrence of R," that is,
S+R.

A nondeterministic finite automaton (NFA) is conventionally represented by a
directed graph, whose nodes are stgtes, and an arc from state p to state q can be
labeled by any symbol from I or by E, the empty string. We allow multiple arcs
between two states, but we usually represent these arcs by a single arc with more
than one label. One state is designated the start state, and one or more states are
designated accepting orfinal states. The NFA accepts a string a1 a2 ... a, if there is
a path from the start state to some accepting state, and the labels of the arcs along
that path read ai a2 ... an. Note that e may be a label of one or more of those arcs,
but e is "invisible," that is, it can appear any number of times along the path without
appearing in the string accepted.

Example 1. Let us now take an example of how a sequential process can be
represented by regular expressions and by an NFA. Consider a control unit that
receives a sequence of two bits, which it interprets as a command according to the
code

00 - add,
01 = subtract,
10 = load,
11 -= load complement.

For simplicity, we assume that the source of commands is "well behaved"; we never
receive anything but two bits at consecutive times, nor can a second command be
received while the previous command is being processed.

The output consists of three lines, A, C, and L, which, respectively, cause (A) add
the memory buffer to some particular register, (C) complement the memory buffer,
and (L) load the memory buffer into the register. When the C signal is sent, the
controller waits for a completion input signal (X) before sending the A or L signal.
As the machine is synchronous, we actually have a fourth input symbol besides 0, 1,
and X in our alphabet Z. We use N to indicate that no command bit or completion
signal is prFsent on the" input.

As an aside, we note that the input alphabet 1 (0, 1, X, N) should be regarded
as consisting of logical, rather than physical inputs. For example, in practice there
might be three binary input lines: "command bit," "command present indicator,"
and "completion." The 0. input is represented by a command bit of 0, with the -
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Command bit 0 0 0 0 1 1 I 1
Command present 0 0 1 I 0 0 1 I

Fto. I, Actual-to-logical input interpretation. Completion 0 I 0 1 0 1 0 1

Logical input N X 0 0 N X I I

nýN

b - 0 d A output
Start 0 , 7e

a 1 C otput FIG. 2. An NFA t'pr the controller example.
0,1,N, X 1"

L output
0

command-present bit set to 1. The completion bit can be ignored, as a I on that line
while the command is present violates our assumption that commands do not overlap.
The interpretation of the three bits as input symbols from I is shown in Figure 1.

The regular expression for the "add" output signal is given by

A = .*0(0 + IN*X),

where stands for "any input symbol." That is, we wish to signal an addition if after
any sequence of inputs we see a 0 followed immediately by either

(1) another 0, completing the command 00 = add, or
(2) a 1, completing the command 01 = subtract, followed by any number of N's and

an X. In this case, we assume the "complement buffer" signal C is sent after
receiving 01. The N's represent "clock ticks" while we wait for the completion
signal. When the X is received, we know the buffer has been complemented and
immediately issue the "add" signal.

Similarly, we can specify the conditions under which we should emit the C and L
signals by

C .*(0 + 1)1,
L = *1(0 + IN*X).

We shall subsequently discuss an algorithm to convert any regular expression to
an NFA with some-arcs labeled E. However, 'wefirst illustrate the NFA concept with
one NFA for the controller, this NFA, shown inFigure2,s. no- &-arcsbut it does
have nondeterminism, in the sense that it can be in more than one state at the same
time.' For example, suppose we have input NO 1. We begin.in state a, the start state.
The only arc with label N leaving state a leads back to a. Thus, after the first input
symbol we are 0inlyz iii siate a. The next* m- t, 0, labels arcs from a to a and b, so
after the second input we are in those two states: Then we look for arcs out of a or
b labeled I and we find them from a to a''ind , 'and from b-tod and g. Thus, after

the third ir~putwwe are in a, c, d, and g. Since g is a final state, we "accept" NO1. In
practice, state g represents. the C signal, which is appropriate, since our input is one
instance of the "subtract" command- 0 . ..

'Nondeterminism should not disturb us-here. The NFA is a mathematical abstraction, and its implemen--
tation in hardware is quite different from that of its deterministic counterpart (a DFA), which is guaranteed
to be in only one state at a time. (
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*I
10

0 0 1 >XFaa.3. Parse tree ror.00(O + INOX).

7
N

0____O0 0 _ O
(a) (b) (c)

(d) (e)

(0

Fio. 4. The McNaughton-Yamada constructions for (a) e, (b) 0., (c) a in 2, (d) union,
(e) concatenation, and (f) closure.

4. The McNaughton- Yamada Construction

There is a well-known recursive algorithm, due to McNaughton and Yamada, for
converting regular expressions to NFAs with some e-arcs. The algorithm produces
NFAs for the regular expressions (RI) + (R2), (R1)(R2), and (R1)*, given NFAs for R,
and R2. To begin, we must "parse" a regular expression. That is, we view the regular
expression as a parse tree, where leaves represent symbols in 2 (or e or 0 if needed),
and interior nodes represent the application of union, concatenation, and closure
operators to subexpressions. For example, the parse tree for expression A of Example
I is showlit in Figure 3. See [1] for a description of how parse trees for regular
expressions can be construict7 .
.-The McTaughton-Yamada algorithm [5, 101 constructs for any regular expression

an NFA with one start state and one fimal state. It is conventional to draw NFAs
with the start state on the left and the final state on the right. Figure 4a-c shows the
basis of the construction, the two-state NFAs that recognize e, 0, and any particular
a in 2, respectively. Figure 4d-f shows howi NFAs M, and M2 for regular expressions
Rf.andR 2 a re combined tgeiit NFAs for'"(Rl)+*(R2), (Ri)(R2), and (R)*.- Simple

modifications of construction (f) give us the positive closure (+) and zero-or-one (?)
operators. In the first case, eliminate the &-arc from the new start state to the new
final state, and in the second case, eliminate the backward arc.

1A F.4p

Example 2. The NFA constructed from the expression A - .*0(0 + INX) is
shown in Figure 5. There, and henceforth, we adopt the convention that final states
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Start

FIo. 5. NFA for expression A.

FIG. 6. Combining several NFAs into one. Start

\0

are indicated by double circles. Note the great superfluity of e-arcs. Many of these
can' be eliminated by considering special cases in the recursive construction rules.
They can all be eliminated by replacing an e-arc from state p to state q by arcs from
p to whatever, states q's arcs go to, and then, if q is final, making p final. Then we
may eliminate q if it is not the start state and it no longer has any entering arcs. See
[1] for details. .

There is one more step to the construction of an NFA from a collection of regular
expressions. We introduce a new start state with e-arcs to the start states of the NFAs
for all the regular expressions in the collection. This construction is. illustrated in
Figure 6. Note, however, that the various final states of the combined NFA are not
indistinguishable. Each represents one of the output signals for the device. In a sense,
the NFA of Figure 6 represents an extension to the usual concept of an NFA, since
there are differing output signals associated with the different final states.

5. A PLA Implementation of NFAs

The programmable logic array (PLA) has been used as a systematic implementation
of deterministic finite automata (see [11], e.g.). In thefe. implementations the states'
are binary~coded, and the bits representing the new state are computed from the bits
of the old staieiand the current inputs. , - ,.-_

While we'shall not attempt to describe the mechanics. of PLAs in detail here, a
rough idea of how they work can be obtained by looking ahead to Figure 7. There
we see a typical PLA, which is a two-dimensional array of wires, divided vertically
into an ajd-plane and an or-plane. Certain signals (labeled state b, -- 'state .e in
Figure 7) are fed back from the or-plane to the and-plane, 'with an implied delay of.
one time unit. New values-of the feedback signals and output sig (LC, and A in
Figure 7) are computed in the following manner. Imagine signals with-yvaue 1.
originating at the left end of each horizontal wire. In order for that signal to c'ros.the
and-plane, all the vertical wires that it intersects at a dot must have value 1. If the
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and - plane or-plane

0 1 N X( state b L C A

€a

inputs state C outputs
(State$

state d f, g and h)

state e

Fia. 7. PLA for machine of Figure 2.

signal reaches the right end of the and-plane, it enters the or-plane and makes 1
every vertical Uina it intersects at a dot. For example, in Figure 7, if the fourth and
fifth vertical wires (X input and state e) are 1, the top wire will have its signal reach
the or-plane and turn on the L output.

An alternative use of PLAs is to use one bit for each state of an NFA. We shall
assume that the NFA h 'as no e-arcs, although that restriction is not essential if we
allow .states to be fed back from the or- to and-plane without any delay. For each arc
of the NFA, labeled a and entering state q from state p, we create a term in the
formula that tells whether q is one of the states in which the NFA is currently found.'
This term is ap~; that is, the term has the value true if and only if the input is a and
state p was previously on. Stat'e q will be on at the next dock tick if and only if one
of its terms has the yalue true; that is, therelis some-arc labeled a to ~q from a
previously qn, state., . '

We mayoconclude from the above remarks that the number* of rows of the PLA,
each of which, corresponds to a term in the formula for 'one or more states, is no
greater than the niumber of arcs in the- NFA.3 .The number of co'lumns in 'the PLA is
twtic~e ten'urber'of states (for the, next and previous versions of eachste)puth
number of 'input bitd ?and their ~complcrnents, if nee'ded. te)puth

IExamplel 3.; Let us implement the NFA of Figure 2 as a PLA. We begin by
noticing that there are eight states, so in -principle we need sixteen columns for the

; . . . ..,,. .,

2 We shall say a state is on when the NFA is in that state.
3 .Recail that, tec~hnically, an aiq with several labels is shokthand for a set of arms each with one label and
the same source and destination., ****- *.-'*-~-.--:
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Inputs state code

0 1 X N A C L S1 S2 S3

a b c a a 00 0 1 0 0
b d q a O0 0 00 0
c d e 0 0 0 0 1

FiG, 8, DFA from Figure 2 and one possible d d a 1 0 0 0
state encoding, e f g h 1 0 1 0 0

f d e a a 0 0 1 0
9 f g j k 0 1 0 1
h bc a a 1 0 0 1
I b c h 1, 0 0 0 0 1 0
J b c a a 0 01 1
k b c J k 0 0 0 1 1

next and previous states. The inputs are coded by three bits, so we might assume we
need six more columns. However, let us assume that the inputs are decoded into the
four logical signals 0, 1, N, and X, by the table in Figure 1. We thus need a total of
20 columns. Furthermore, if we sum the numbers of labels on each of the arcs in
Figure 2, we see that we apparently need 16 rows. However, we can do considerably
better than this if we observe the following.

(1) States f, g, and h have no arcs out, and therefore their values need not be fed
Jback, as those values are not used in the terms for any states. However, we must
.,compute values for these states because they are final states. This arrangement
saves three columns.

(2) State a is always on. Therefore, it need not be computed, and terms involving
state a can use "true" in its place. This saves four rows and two columns,

(3) The transitions from b to d and g on input I require only one row, since the
conditions are the same. Similarly, the two transitions from c on input 1 require
only one row. Thus two additional rows can be saved.

The resulting PLA has 15 rows and 10 columns. It is shown in Figure 7, where
circles represent connections... 0

It is interesting to compare Figure 7 with the conventional PLA implementation
of machines. If we convert the NFA of Figure 2 to a minimum-state DFA, we find
the latter has 11 states. By way of comparison, we chose a particular encoding for
states of this DFA. The eiicoding included the A, C, and L output bits and three
other bits (the minimum necessary, since five of the states have A'= C *- L 0). The
state transition table and 'the "encoding 4re shown in Figure 8.V Blanks in the state
code 'entries indicate that either 0 or 1 niy be used, that is, states'with'blank S2 and
S3 entries have four alternative encodings, and we can use the most co~nvenient bne
when one 8f these states is the next state.;'',

"Obviously,'we could use only four bits to encode states, but then we would have
to compute the output, bits anyway, giving back some of the'columin we saved by
using shorter codes for the states, and also requiring additional terms to b coimpuited,
possibly increasing the number of rows requiret. . " - "
..',.While N* cannot be sure we have a minimum-row PLA, even after restricting
ourselves to the state encoding of Figure. 8,-a careful selection of terms sufficient to
compute the six state bits resulted in a 22 x 26 PLA. That is, there were 26 terms

',Note that the states in Figure 8 represent subsets of tile ýstates in, Figure 2, and thdre is no uecessary
relationship between states of the same name in the two figures. -. ..
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required, and the 22 columns consist otf6 for the next state, 12 for the previous state
bits and their complements,' and 4 for the input bits.

The product of the dimensions for the conventional PLA implementation is about
four times what it is for the NFA-based implementation. The inclusion of space
around the peripheries of the two PLAs for drivers and clocking gates will reduce the
4: 1 ratio somewhat, but there is still a clear advantage for the NFA approach to this
design problem."

We do not wish to generalize the results of one example to all sequential machine
designs. Our method will be advantageous only when the problem at hand lends
itself to a succinct description by regular expressions. For example, our methods do
not work well on the traffic light example in [(Il, because tha't controller embodies
a modulo four counter, and regular expressions are not convenient for expressing
counts.

Let us summarize this section by formalizing the relationship between the size of
regular expressions and the size of PLAs needed to implement them.

THEOREM 1. For every collection of regular expressions consisting of a total of
n operands, and with E not in the lIaguage of any expression,7 over an alphabet of at
most 2'1 symbols (i.e., io 'bits are u~ed to encode inputs), there is a PLA signal-
ing the recognition of each of these expressions; this PLA has at most 2n rows and
2(n + io + 1) columns.

PROOF. First, let us assume there is but a single regular expression; the construc-
tion for multiple expressions will be clear from our discussion of single expressions.
Begin by converting the expression to a nondeterministic finite automaton with L
transitions, using the McNaughton-Yamada construction of Figure 4. Observe from
that construction that there will be exactly n states with transitions out that are
labeled other than E. These are exactly the states on the left of Figure 4c that were
introduced by the n uses of that part of the construction. Call these n states, along
with the initial and final states, distinguished.

Eliminate e-arcs by computing for each distinguished state the set of distinguished
states that it can reach along paths with exactly one non-e-arc and any number of
e-arcs. Replace the existing arcs by an arc labeled a from distinguished state p to
'distinguished state q whenever. there is such a path labeled a from p to q. By the
definition of distinguished state and the fact that 6 is not in the language of the
expression (and therefore there is no 6-labeled path from initial to final state), the
new NFA is equivalent to the old, and surely the new has no e-arcs.

Our PLA will have 24 columns for the input bits and their complements. It has a
column in the and-plane for the initial state, a column in the or-plane for the final
state, and columns in both planes for the other distinguished states. Since there are
n other distinguished states, 2(n + 1) columns are needed for states, and there area
total of 2(n i/o + 1) columns.

' Note that the PLA implementation of nondeterministic finite automata never requires the complements
of state bits., .. .
"One of the, iferees, and also M. Foster and H.-T. Kung, pointed out that in principle, since the PLA

represents a d~terminisk- finite automaton equivalent to the original nondeterministic fiaite automaton,
it is never possible for the NFA approach to be superior to the conventional method. We believe, however,
that the issue is not only the size of the theoretically optimal PLA, but the ease of finding such a PLA. It
is doubtful that going from a DFA to a state encoding that reflects the underlying NFA is an easy.problem.

,l' strictly speaking, no PLA can recognize e, since there is a clock tick that must elapse between illninput
ann ,. - --.-vever, a simple modification would allow direct (unclocked) connections from input
and outpu., . through the PLA or around it.
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The rows correspond to transitions in the new NFA. For each distinguished state
p other than the initial and final states, we need one row that is turned on whenever
p is on (i.e., the NFA is in state p, among others), and the input symbol is that for
which p has transitions out. In the or-plane, this row turns on columns for the states
reachable from p by the arcs labeled with that symbol. In this manner we create n
rows.

We also need rows for each symbol labeling one or more transitions out of the
initial state. These rows are turned on when the initial state wire is on and the input
wires representing that symbol are on. It is easy to see that the number of such
symbols is no greater than n, since each transition out of the initial state must
correspond to a non-e transition of the original NFA. All transitions are either from
the initial state or from a distinguished state that is neither initial nor final. Hence,
all transitions are implemented by the above rows, and thus a total of at most 2n
rows are needed in our PLA. F1

As a consequence of Theorem I, for fixed input alphabet Z, we can implement
regular expressions of length n in 0(n2) area. However, in practical examples it is
common for an n-state NFA to be converted to a DFA with roughly n states. For
example, the 8-state NFA of Exam'ple I becomes an I 11-state DFA. If that is the case,
then an n-state NFA might be implemented by an 0(log n) X 0(n) PLA. The DFA-
based implementation of machines would be superior, but, as mentioned, it is not
necessarily easy to find the best PLA for a DFA. Surprisingly, we shall see in the
next section that there is a totally different approach to the implementation ol :egular
expressions that yields a circuit of dimensions 0(,vn) X 0( v').

6. A Hierarchical Implementation of Regular Expressions

An inspection of Figure 4, which shows how to construct an NFA from a regular
expression, suggests that we could lay out a circuit directly on a chip, if we represent
states of the NFA by appropriate logical elements, represent E-arcs by wires, and
represents arcs labeled by input symbols by wires with gates checking for that symbol.
This approach was suggested in [121, for example. The states used in Figure 4 can be
divided into two classes:

(1) those that have e-arcs out, and
(2) those that do not, that is, they are final states or have arcs leaving that are labeled

by an input symboL -

States in the second group are implemented by latches, that is, pairs .of inverters
connected in a loop, with one clock phase to control the output .of each. Those in the
first group are really nothing more than junction points in the circuit, allowing two
signals to meige (through an or-gate) or one signal tio-fan- out into. two identical
signals (ito logic at all is needed here). -

When building large circuits from smaller ones, it helps if we view each circuit as
a rectangle, as suggested in Figure 9. Power is supplied at the upper left and passed
to the right if needed by a circuit to the right. Ground drains at the'lower right, and,
ground from circuits to the left is passed in at the left if necessary., Two phases of a
clock andc the bits needed to represent an input symbol are passed in at the left and
will pass out at the right if needed to supply a circuit to the right., " ........ "' '" .....

There is a signal called state-in that, if it is 1, turns the start state of the circuit on
at. phase one of the clock. An output signal, called state-out, is turned on at clock

Viewifig power and grountd this way enables us to avoid crossing them, which is generally not feasible in

integrated circuits.



Compilation of Regular Expressions into Integrated Circuits 613

power in ---- power, if needed to right

clock in --- clock, if needed to right

inputs in --- input, if needed to right

state-in state-out

ground from
left if --- ground out

needed

FIG. 9. Format of a circuit implementing a regular expression.

power .--- powor
clock -. ".Clock

inputs ---.. inputs
stt-nstate-out stt-n st a.te -out

state-in stt-i

ground --- ---- ground
(a)

power --- i-.power
clock ..... mclock

inputs -.--.. inputs
state-in state-in - state-out

gun----ground

L Istate-out
ground = =---ground

(b)

FiG. 10. Circuit connections. (a) Horizontal connections. (b) Vertical connections.

phase two if the circuit enters its accepting state. In general, phase one of the clock
is used to decide which states will be on after processing the current input symbol
and to propagate this information through states with e-arcs leaving. Phase two is
used to transfer the decisions made at phase one to the output of the latches that do
not have c-arcs out. 7
-Let us suppose we have circuits for regular expressions R1 and R2, and we wish to

-construct a circuit for (R1)(R2). We can connecttlhe circuitS in cascade assuggested
by Figure 4e; this connection is shown in Figure 10a. Note that the final state of the
first mathine is given an e-arc out. Thus the latch representing it is no longer needed
or appropriate. We must replace it by a junction point or, if there are several input
arcs for that state, by an or-gate. As latches -can be expected to require more area
than a single gate .or junction point, we can make this replacement without worrying
about the geometry of the circuit, and we shall henceforth assume such changes are
made ,hen necessary, not only in the c'oncatenation construction, but in the union
and closure constructions as well...

Figure l0b shows an alternative organization for the circuit, in which the first
machine is placed above the second. Similarly, when we implement the--union
construction of Figure 4d, we can choose t6 place either constituent circuit above the

(- other or place either to the left of the other. The closure construction, since it does
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- * for

It * O(O+IN X)

. ~ forI

I fI

r - --- -- _"- -" .... - - -

N for N"I I

N

I I,
I fo _ _ _

or or I U fo I I I

for

0(0+INX) -

-FIG. 11. Straightforward implementation of the McNaughton-Yamada algorithm.

not combine two circuits, gives us little choice; we must simply augment the circuit
with surrounding feedback and feed-forward wires as suggested by Figure 4f.

The reason we care about the relative positioning of circuits is that we desire each
circuit to have an aspect ratio (ratio of height and width) near one. For example, if
wt must combine two circuits that are longer than they are high, we would prefer the
vertical connection of Figure l0b to the horizontal connection of Figure 10a, since
the former has a squarer shape than, the latter. The reason, in turn, for desiring an
aspect ratio near one is that, on the average, we can couple squarish circuits with less
waste space than we can couple elongated circuits. For example, neither Figure 10a
nor b is very good if one of the constituent circuits is very tall and thin while the
other is short and wide. Another motivation for keeping aspect ratios low is that the
basic circuits, such as latches, canrot be designed in a fixed area with a fixed aspect
ratio if the area allotted is small: and the aspect ratio is high..Thus the rectangles
representing the basis constructions of Figure 4a-c must be allocated space of limited --

aspect ratio.. - ... . ... . . ... . .
,.Unfortunately, just keeping the aspect ratio within bounds is not sufficient to -

guarantee efficient use of space, for one of two constituent circuits could be signif-
icantly larger than the other. For example, an expression like 7-

~ a2 )a3 + a4)as +* .-. '.)a,,3

forces us to crtate either a long, thin circuit with many long wires or an L-shaped
circuit, if we restrict ourselves to the constructions of Figure 10. As another example,

S* .: .. ... .. (((afa2)*a3)* a,n)

requires n nested feedback loops, so it appears to iequire O(n2) space no matter what
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we do," As we shall see, all these problems can be solved, and circuits for these
expressions, taking area that is proportional to the length of the expressions, can be
generated automatically. Befbre proceeding to the techniques involved, let us illus-
trate the basic McNaughton-Yamada construction and also show how the combi-
nation of" unequally sized circuits tends to waste space.

E'xamnple 4. Let us build a circuit for the regular expression .*0(0 + IN*X),
whose parse tree was given in Figure 3. Using judicious choices between horizontal
and vertical connections when union and concatenation constructions are used, we
might obtain the layout"' suggested by Figure 11. There. only state-in and state-out
wires are shown, input, power, ground, and clock wires are omitted. 0

7, A Compact Hierarchical Implementation of Regular Expressions

There are three insights necessary to our implementation of regular expressions.
First, we must observe that given any regular expression whose parse tree has n _> 2
leaves, we can find a subtree that has more than n/3 but no more than 2n/3 leaves.
For example, the tree of Figure 3 has six leaves, and its subtree for expression IN*X
has three leaves, which is greater than two and no greater than four. The subtree for
0 + IN*X would also qualify. Tlhis application of "divide and conquer" to binary
trees was first used in [9].

Once we have found a subtree of about half the leaves, we can build a circuit C1

for it, and we can build a circuit C2 for the remaining tree, with a dummy leaf in
place of the deleted subtree. This leaf is an imaginary input symboL, and when
applying the McNaughton-Yamada algorithm to it, we generate a start state s and
a final state f, using the construction of Figure 4c, but without the arc. A wire
connects state s of C2 to the start state of circuit C1, and another wire runs from the
final state of Ct to f In effect, we have simply removed C, from its rightful place
between s and f Note that both states s and f are unnecessary and can always be
replaced by junction points, even if latches are created for them initially. The
arrangement is sketched in Figure 12.

Notice how, if C1 and C2 are about the same size and shape, they are likely to fit
together, either side by side, as shown, or one above the other. In comparison, if we
had to distort C2 by "squeezing" C1 between s andf, we might or might not achieve
a compact layout.

As our circuit design rules introduced in Section 2 do not permit us to cross more
than three wires at a point, simply laying down the wires shown in Figure 12 could
lead to an illegal circuit. We must therefore "pull apart" C1 and C2 at four channels,
in which the wires can run. The idea is shown in Figure 13. To create a channel, we
select a line across the circuit. Circuit elements and wires running parallel to the line
are held at one side of the line, while wires perpendicular to the line are stretched.
After stietching some constant amount, there will be room to fit another wire parallel
to the line. Circuit elements to which the wire must be connected are, we presume,
crossed by the line and can be moved into the channel to connect with the wire.

-The above method for creating channels will be successful if the original circuit

(1) has all wires riinning horizontally or'vertically; "- ; ,,. '..' . ,

SNote, however, that there is an equivalent regular expression with an 0(n) area circuit.
"• We shall use the term "layout" in what follows to refer to the relative positioning of various subcircuits.
The term does not have its more usual connotation of a much more detailed design...However, the
positionings we use are intended to be such that a layout. in the usual sense, could be doiie-without
repositioning.,

(,..
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FIG, 12. Divide-and-conquer implementation f
of regular expressions.

C

'II
, ii

I !

' ITL'----
11 II

FIG. 13. Channels to carry wires of Figure 12.

"yf

I . . .:

(a) (b)

FIo. 14. The channel creation process (a) before creating channel and (b) after creating channel.

(2) never has more than two wires crossing at a point; and .

(3) uses "circuit elements" from some fixed set, so there is an a priori bound on the
.size of a circuit element...

Condition (3) guarantees thata channel of somhe fixed width wil be sufficient to run
a new wire without crossing any circuit elements, and (1) and (2) assure that the new
w'irewill ;6ily cross one other wire at a time. Figure 14 givis an example of the
channel creation process.

The siecond insight needed is that even if C, and C2 are about the' same size, their
aspect ratios and relative sizes might be such that they do not have* a'common
dimension, either the same width (for a.vertical arrangement as in Figure 12) or the
same height (for a horizontal arrangement). Unless our recursive circuit layout
algorithm works in such a way that when applied to C, and C2 we can expect a
dimension in common, we may be forced to connect C1 and C2 in a manner that
wastes about a quarter of the space. Since the waste can go on at every level of~the
recursion, we shall have an algorithm that uses area n1092( 8 / 3 ) = n '4 to implement a
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10

8
-3 for 1 N*X

10 ____for --_*O(O÷__8 FIG. 15. Initial layout.

,4 for ** 0(0.D)

regular expression of size n. This result is superior to obf'ious methods, but not as
good as we can do.

The solution to the above problem is to design our recursive layout algorithm to
take as parameters

(1) the parse tree of the expression for which we want to design a circuit,
(2) the number of nodes of that tree; and
(3) the desired aspect ratio, a real number in the range I to 4.

We assert that there is a constant d such that for each parse tree of n : 2 leaves,
there is a circuit of aspect ratio r and area dn, for any r in the range J _< r < 4. It will
be shown that for n 2 3 and aspect ratio r between I and 4, we can always arrange
Cý and C2, either horizontally or vertically, with a border and channels adequate for
connections between C, and C?, and to the "outside world," and with this arrange-
nient, recursive calls to design C1 and C2 can be given appropriate aspect ratios
between I and 4, so that C, and C2 will have a side in common.

Example 5. Let us consider how the parse tree of Figure 3 would be processed
recursively by the circuit layout algorithm. First, we must find a node from which
between I and I of the leaves descend. The preferred candidate is the root of the
subtree for IN*X, which divides the leaves into two equal parts. As the initial call to
the circuit routine would normally ask for a square circuit (aspect ratio 1:1), we may
position the subcircuits for .*0(0 + D) (footnote I I), and IN*Xeither horizontally or
vertically; let us choose the latter. As the first expression has four leaves and the
second has three,12 the heights of the two subcircuits should be in the ratio 4 to 3.
They are given the same width. A sample arrangement, in which the entire circuit is
allocated a 10 X 10 area (in some units), and borders are one unit wide, is shown in
Figure 15.

We how lay out the circuits for IN*X and .*0(0 + D) in the rectangles of aspect
ratios .3:8 and 1:2, respectively. We should, in priniciple, divide-each of these
expressions into two parts and recursively synthesize their circuits from circuits for
the parts. However, we omit the details of those recursive calls. One circuit that could
result is shown in Figure 16. 0

The third necessary insight is that two Or more consecutive applications of the
closure operator are equivalent to one. That is, for any regular expression R we have
(R)* - ((R))*. As a consequence, we may eliminate superfluous *'& and view regular
expressions as if all the operators were binary operators chosen from the list: union,
concatenation, union-then-closure, and concatenation-then-closure. We use the con-

D stands for the particular dummy symbol used as a placeholder for the expression IN'.X.
2 However, if we are careful, we can avoid allocating circuit area for the dummy symbol, whictiwe know

wili be represented in the circuit by junction points orily.
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N I

I ~for IN* X

I

L

FIG. 16. Complete layout for the expression of Figure 3.

structions of Figure 4d and e, followe4 by f, when closure is desired, to build circuits,
just as in the McNaughton-Yamada algorithm. Operands are either single symbols
or symbols to which closure is applied, and circuits for operands can be constructed
by Figure 4a--c optionally followed by f. Note that this algebraic simplification is
necessary to avoid awkward situations like the expression a*.***' which, if the
McNaughton-Yamada algorithm were applied blindly, would result in a circuit of
area 0(n 2).

The heart of the circuit layout algorithm is the recursive procedure LAYOUT
sketched in Figure 17. The algorithm itself is a call to LAYOUT(T, n, 1), where T is
the parse tree for a regular expression of length n, that is, T is assumed to have n
leaves. In LAYOUT, I is assumed to be a fixed input alphabet defined globally, so
its size may be regarded as constant. Also, b is a constant chosen large enough that
the total width of the channels and border area, either in the horizontal or vertical
direction, is bounded above by b. Note that channels need to carry one wire each,
while border areas may need to carry 4 + .og2 11 1 I wires, one for each of the input
bits, and one each for power, ground, and the two clock phases. Finally, A(n), the
area allotted to a circuit for a regular expression of length n, is a function of the form
dn - eV• -f, whose adequacy we shall show in the next section.

P. lnalysis of the Algorithm.

We now show that LAYOUT can be made to use 0(n) area, by showing that a linear
....function A(n). can be chosen. We must pick A(n) to satisfy the following constraints.

(1) The area A(n) available for C in Figure 14 must not exceed area A(nt) + A(n 2)
used for C1 and C2 plus the area needed for borders and channels.

(2). The aspect ratios of C1 and C2 must be in the range I to 4 if that of C is.
(3) ,A(2) must be large enough that we can build a circuit for any regular expression

_,of length 2 in that area, with any aspect ratio up to 4. _ .

LEMMA i. :IfrA(n) _ 25b2 and C of Figure 14 has aspect ratio 4 or less, then C, and
C2 have aspect ratios in the range 1 to 4. ...

PROOF. The extreme cases we must consider are when n -" 2n2 (footnote 13) and
either

'• Since 2n/3 a- n, > n/3 and n, + n2 - n + 1, it is easy to show that nl/n2 must be in the range J to 2.
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function LAYOUT(T, n, r); (T is a parse tree with n a 2 leaves. LAYOUT returns
a circuit of area A(n) and aspect ratio r; we assume without loss of generality that
r > 1; otherwise rotate the layout 900. The circuit returned has only horizontal and
vertical wires, and at no point do more than two wires overlap.)

begin
if n - 2 then

use McNaughton-Yamada algorithm to produce a circuit C
else (n • 3)
begin

select a node N of T such that N is the root of a subtree with nj nodes,
where n/3 < n, s 2n/3;

let T, be the tree with root N;
let T2 be T with the subtree rooted at N replaced by d dummy leaf;
n2 :- n - n, + 1; (T2 has n2 leaves)
(now we perform horizontal decomposition, as in Figure 12)
h :1 A(n)/r; (h is the height of circuit C of Fiture 12)
h: h - b; (height of C, and C2 in Figure 12)
wj :- (h * r - b) *n8/(ni + n2); (width of C8)
w2 : h * r - b - wt; (width of Ca)
ri := w1/hx; r2 :- w2/h 2; (aspect ratios for C, and C2}

C, := LAYOUT(T8 , ni, r1);
C2 . LAYOUT(T 2, n•, r2);

Separate circuits C, and C2 to make two horizontal and four vertical
channels for their interconnections, as shown in Figure 13. Figure 14
showed how this operation could be done in such a way that wires could
be laid along the channels without violating the circuit design rules we
have assumed;

Add border around C, and C2 , and run wires for inputs, etc., to feed both
circuits and to produce wires out of the bottom and right edge, as
indicated in Figure 10;

Call the resulting circuit C;
end;
return C;

end

FIG. 17. The recursive procedure LAYOUT.

(a) C has aspect ratio 1, in which case C2 could be too tall and narrow, or
(b) C has aspect ratio 4, in which case C1 could be too short and wide.

Let the height of C be h. Then in case (a) the height of C2 is h - b and its width
is (h - b)/3, so its aspect ratio is 3, satisfying the lemma. In case (b) the height of C1
is again h -7 b and its width is 1(4h - b). Thus its aspect ratio will be 4 or less
provided

•b a (1)(1)(4h ..-..

"that is, h • Ab. Since the area- of C in this case is 4h2, the lemma follows. 0

THEOREM 2. There exist positive constants d, e, and f such that for all n a- 2,
the function LA YO UT will succeed in producing a circuit !f the allotted area A (n) is dn
-e •-f.

PROOFj Let us, for the moment, assume that d, e, and f satisfy the lemma for
n - 2. Notice that when we divide a tree T of n - 3 leaves into T, and T2 in function
LAYOUT, neither'-nI nor n2 Can be-.- Thus we can attempt to prove by induction,
with a basis of n = 2, that area A(n) = dn - en - f suffices for LAYOUT to
produce a circuit. To develop the induction,' let n a: 3 and n, - an for some constant
a, I < a < . Then the areas of C, and C2 are A(an) and A((I - a)n + 1), respectively,
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since n, + n2 = n + 1. Observe that C, and C2 are, by Lemma 1, of limited aspect
ratio, and their areas are also chosen by LAYOUT to be of limntied aspect ratio.
Hence the borders and channels in Figure 14 have area that is proportional to any
side of C, or C2 , the constant of proportionality naturally depending on which side
is chosen. Specifically, there is some constant c such that the extra area of circuit C,
beyond that of C, and C2, is at most c1 -an). Thus

A(n) = max [A(an) + A((I - a)n + 1) + c -4 ]. (1)
1/3<a-,2/3

We assume Ai(m) < ddm - e 1m -,f for 2 :i m < n, and show that the same holds
when m = n. By (1) it suffices to show that

dn - e -f

Smax [adn-eIan+(l-a)dn+d-eV/(l-a)n+ I -2f+cavdn]. (2)
1/3<acs2/3

In the last term of (2), N has been conservatively replaced by ýaaan. Simplifying
(2), we obtain

0> max [e-I-ev1-e/(1-a)n+I+d-f+c (3)
I/3<a:52/3

Dividing (3) by -e vn' yields

+ L- fd _c (4)
0-e max I"av + l-a+--- -ad(4)

I/3<a:2/3 IL e I-v' e I

The first three terms on the right of (4) sum to at least 0.39. The next term can be
made 0 if we pick f d. The last term is no more than 0.28 if we choose e = 3c F'd.
Thus, for these choices of e and fin terms of d, (4) is satisfied; hence so is (2).

Now we must satisfy the condition that A(2) is adequate to hold all circuits for
regular expressions of length 2. We simply observe that we can pick d so that
A(2) = d - 3c Fd- exceeds any quantity we choose, so an adequate value of d can be
found. [l

One may wonder if the linear bound on area for a general regular expression is the
"best that could be achieved. We believe it is, because of another assumption that is
generally made ([2], e.g.) about integrated circuits, that there is a finite (as opposed
to infinitesimal) amount of area needed to store one bit of information. If that-is the
case, then we cannot improve on the linear growth rate in Theorem 2, because there
are regular expressions of length proportional to n that require n bits of information
to be remembered if we are to recognize them. A simple example is the family

.. ... (0 + '1) *1(0 + I1-)(O + 1) ... (0 + 1),

where n terms (0 + 1) follow the 1. For each n, this regular expression denotes the set
of strings of O's and l's that have a I n positions from the end. Clearly, we must
remember the last n inputs if we are to recognize all strings in the language.

9. Implemeytation Considerations. .•

A compiler for single regular expressions has been implemented by J. U1lman; it
follows many of the ideas outlined here. The major point of departure is that no
slicing of circuits is attempted. Rather, for each dummy symbol it creates a neW input
wire. The circuit to "recognize" the dummy symbol simply switches the dummy*
input wire and the state wire, with no clocking gate.
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Fio. 18. Growth of circuit size with expression size.

As different parts of the circuit have different numbers of input wires, and the
number of input wires, including duimmies, can get large, we do not know for certain
that this approach yields linear-sized circuits in the worst case. However, empirically,
the growth rate is fairly linear. Figure 18 shows the area of circuits generated by the
compiler for the regular expressions S,, that are intended to express the condition
that n input wires are fired in sequence.

By way of explanation, the input to the compiler distinguishes between "wires"
and "symbols," the former being physical wires and the latter abstract symbols
mentioned by the regular expression. Thus we may define symbols ai and bi for
I _s i _5 n, to represent the fact that wire i is on or off, respectively. Then S,, can be
written

bi + .*(ab 2 + a2b3 + ... + a.-,b,,).

S,, then recognizes those strings that violate the property that all n wires are on in
turn. The number of operands in S. is actually 2n, rather than n, but the difference
should be of no concern.

The compiler in question also implements the PLA strategy on small subexpres-
sions. It was found that the smallest ratio of area to number of operands for our PLA
implementation occurs when the number of operands is about 8, and approximates
6000A2 per operand.' 4 However, since there is overhead in wiring rectangles together,
our best results occur when PLAs are built for expressions in the 10-15 operand
range, sometimes more. The circuits whose sizes are represented in Figure 18 were
created before the PLA feature was implemented. That feature, used with various
size ranges for expressions that are to be implemented as PLAs, results in a 10-40
percent reduction in circuit area, typically. -

Straightforward circuits to perform the same function as the expressions S,. are
quite a bit smaller than the circuits produced by the compiler. However, it is unlikely
that the compiler can compete with the best ad-hoc circuits in any ..case. A more
promising jexample concerns regular expressions we shall call P,, that recognize
whether the first n synbols in a string of O's, l's, and "don't cares" match the last n,
with "don't care" matching anything. P,, has O(n log n) symbols, n(6 + log2n) to be
"4A is the basic unit of measurement in integrated circuit design. In 1980, circuits could be fabricat-'- w -

X in the range 2-3 micrcns, but as technology improved, we expected X to shrink and hence the same
circuits to take substantially less area.
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exact. While ad-hoc circuits based on shift registers exist and are probably smaller
than what the compiler can produce for all values of n, a fairer comparison would be
with a PLA mechanically generated from a state diagram, say using the Xerox
modules described in [I I]. We have produced for P16 a circuit of about two million
V2, which is close to the area of the straightforward PLA. Since the area of the PLA
will grow as nW, naturally we may expect the compiler to look progressively better for
values of n above 16.

10. Related Work

The ideas of divide-and-conquer layout and of channel creation were also used
independently by C. E. Leiserson [7] and by L. Valiant [15]. We could have used
the results of [7] to show Theorem 2 by proving a "2-separator theorem" for the
graphs of nondeterministic finite automata that we obtain by the McNaughton-
Yamada construction. Strictly speaking, the connections needed for supplying, input,
power, and so on, must be ignored in that theorem and handled outside the
framework of [7].
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AREA AND IDI,.AY IPINAITIES FOR ]iIUIUiI,,VIIARIRAYS

(DIAF'Th-not for u•ze di.vLrti on,)

Jonathan 1Y. reeno * Abbms EL chma.°

Abatract: The asymptotic penalties of restructuring homogeneous VLSI arrays

for yield enhancement are investigated. Each element of the fabricated array is

assumed to be defective with independent probability p. A fixed fraction R of

the elements are to be connected into a prespecifled regular pattern with no

defects. The probability of successfully connecting the pattern must be

bounded away from zero as Its size increases. Let d be the length of the longest

connection and t be the number of wiring tracks needed to accomplish the

interconneetion. It is shown that: (1) Connecting a chain of K elements from a

linear array of N elements requires d =i(logN) and t= 1 track running parallel

to the array. (2) Connecting a linear array of K fixed I/0 ports to distinct non-

defective elements from a parallel array requires d =fl(logN) and t-C)(loN). (3)

Connecting K elements from an N-element linear array to K from a parallel N-

element array, in pairs, requires only constant d and t. (4) Connecting a chain

of K elements from an NxN array requires constant d and one track between

elements; this problem is closely related to the percolation problem of statisti,.

cal physics. In all the above cases, algorithms achieving the given bounds on d

and t are presented which connect the array with probability approaching one.

The algorithms run in O(K) time. (5) Connecting a KxK square lattice from an

.VxN array is shown to require d>0(TGogN). It is conjectured that only a con-

stant number of tracks are required between elements.
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1. Introduclion

The use of redundancy to maintain the manufacturing yield of VLSI circuits

at economic levels is becoming a widespread practice.. For example, many pro-

ducers of 64K RAMs use spare rows and columns. This has been reported to

improve the yield by a factor of five to eight [1]. lUncoln Labs [2] and McDonnell

Douglas [3] are currently experimenting with restructurable whole-wafer proces-

sor arrays. After testing the array elements, programmable links are either

opened [1)I4], closed [5], or switched [3] so as to connect the nondefective ele-

ments into the desired configuration.

The resulting improvement in yield is achieved at the expense ol an

increase in the number of elements on the chip, the addition of links and extra

interconnections, an increase in signal delay and the effort of restructuring. In

this paper we investigate these penalties for regular VLSI arrays. Our approach

is best illustrated through the following simple example.

A linear array of K identical processors, connected in a chain, is to be

implemented on a single integrated circuit, or chip. Assume that each proces-

sor has an independent probability p of being defective and 1-p of being

active. Then the probability that a chip is functional is ( 1 -p)K and the expected

fraction of functional chips, or yield, approaches zero exponentially as K

increases.

In order to provent the yield from approaching zero, the number of proces-

sors on the chip is increased to N=K/R for some R<I-p and switches are pro-

vided to insert the processors in the chain. After manufacture, the processors

are tested. If Ihe number of nondefecLive, or active, processors is less than K

the chip is discarded. Otherwise, K processors may be connected as shown in

Figure 1.1. Since R<1-p, the probability that the chip will have sufficient active

processors approaches one exponentially as K increases.
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DEFECTIVE ACTIVE

JN EN ELEMENTS

k'g: 1.1.: Connection of a chain from an N-element linear array.

Unfortunately, signals from one processor to another may now encounter

additional propagation delay since the connections between processors are

longer than before. Suppose that the maximumn tolerable connection distance is

fixed at d, where each processor has unit width. Let X be the number of ways

that a chain of K active processors can be connected under this eonstrair.L.

There are fewer than N places at which a chain can start, and probability p"

that there will be too many defects before the next active processor. The proba-

bility that the chain can be connected is less than the expected value EX <

N(I-•pd)K < Nexp(-Kpd) which i•pproaches zero unless the size of the chip, .*

grows exponentially with K--a very unsatisfactory situatori.

We will assume here and throughout that the fraction of elements con-

nected, R, must be held constant as N grows. If we fix R <1-p, it is easily shoNn

that d=0(logN)l will suffice to connect a chain with probability approaching C-0e

exponentially in N.

In the following sections, we consider one and two dimensional arrays a:n

several connection patterns. Except for the casc of connection into a latt;:t

(See. 5), specific linear Lime algorithms are given for restructuring thc eh:p

These algorithmns will, with probability approaching one, connect any fractn:,:

R<1 -1) of the total IlUnmbcr or elements. Our results are:

It We use 0(-) to denotc an upper bound, 0() .o dciot, an exact boudd, ,-,d Q() to dcno-.:: a
loter bound, all to wM01i fa ncOsn,11nt factor.
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Sec. 2: The connection of a linear array of K=RN fixed input/output ports to

distinct, active elements from a parallel '-element array is to be accomplished

by mcans of a channel containing t wiring tracks between the ports and the

array, with a switch at each crosspoint. A connection may not run along the

channel for a distance greater than d. We term this arrangement. shown in Fig-

ure 1.2, a selector. Theorem 1 states that unless t=O(logN) and d=O(logN), the

yield approaches zero. This is caused by the high probability that a run of

0(logN) consecutive defects exists within the array. The proof of Theorem 2 j.

describes a scheme which achieves these bounds with yield approaching one

polynomially in N.

/PORT

L L

ACTIVE DEFECTIVE BLOCK I
ELEMENT ELEMiENT C1 =2

Fig. 1.2: A section of a selector. K=(2/ ), and six wiring tracks are provided. A
typical block and cut CQ are shown; thes-,- will be defiled in the proof of Theorem
2.

Sec. 3: The connection ot K pairs of active elements from two parallel N-element

arrays, shown in Figure 1.3, is surprisingly easier than the task of the selector.

A run of defects does not necessarily cause a problem here because there are no

fixed poris--allernate pairs of elements may be connected from other parts of



the array. The proof of Theorem 3 describes a scheme with d=1 =0(1.) which

achieves yield approaching one cxponentially in N.

El PE0El E

1ig. 1.3: Pairwise connection of two parallel N-element linear arrays.

See. 4: The connection of a chain from a two-dimensional array, as shown in Fig-

ure 1.4, can be achieved with t -1 wiring track between elements, d=0(1) and

yield. approaching one polynomially in N. This is demonstrated by Theorem 4,

which is based on certain results concerning the percolation problem of statisti-

cal physics. (A survey of percolation theory will be found in '6]). A slightly

different scheme achieving similar results has been found independently by

Leighton and Leiserson [7].

0D

Fig. 1.4: C',. of a chain of Mig. 1.5: Connection of a 3x3 square
K=I 1 (rcma.; . r~m a 4x4 array. at.tice from a 4X/1 array.

Sec. 5: 'Tc , c .rn.cLion of a KxK square lattice from an NxxN array, as shown in

Figure 1.5i., reqAircs a inaxinuni wive length L= Ox/Aog" ) to prevent yield from

appr-oaching z(,ro, This is dernoist rated in Theorem b using a lemma concerning

-4-



the nonseparability of the square lattice, 'We conjecture that only a constant

number of wiring tracks between elements is necessary, and show that if this is

true d=O(/V\/rW) in fact suffices to connect the lattice with probability

approaching one polynornially in N for any R<15. We note that Leighton and

Leiserson [7] have proposed a connection scheme with d=O(v/To jgloglogN) and

t=0(log lotN).

The problems of connecting a chain and a lattice from a two-dimensional

array of faulty elements were first studied by Manning [8] and Aubusson and

Catt [9]. They proposed algorithms for connecting chains, trees and lattices, but

were unable to provide any theoretical analysis of their work.

0



2. Selectors

We begin by proving a lower bound on the maximum connection distance

and number of tracks required in a selector.

7heoretm 1P For any 0<6<1, the probability that K=RN ports, aligned parallel to

a linear array of N elements, can be connected to distinct active elements tends

to zero as O(NI-/16/Iog) unless the number of tracks in the channel t and the

maximum connection distance d both satisfy

dj j6l_2oaN -- 1.

Proof: For any 0<6<1, let

S=[-logp

Divide the array and the ports into [NR/ml blocks each containing m ports by

cuts perpendicular to the array. Any extra piece of the selector is ignored. Let

ni be the number of elements in block i. Since the array has N elements,

v mj ri. •z N.(.

Suppose there is a block with all its elements defective. If 2d+l1r•m or

2t +I.<.n the middle port of the block cannot be connected Lo an active element.

Under these constraints on t and d, the probability that a connection exists is

bounded by

Pon. Pino block has all elements def uctive?

=1I

-. , ) _ under constraint. (2. )

< exp( -p) ilNP/ rnJ)

< CxP -),6 og' /lop A' -Io ) 6 1oN- 1)



Substituting the definition of m into the assumptions on d and t yields the

result.-

(We note that. Theorem 1 may be extended to the case where the selector is laid

out within a convex region with all the ports on the boundary).

It is easily shown that d,t=O(logN) will suffice to connect the selector with

probability approaching one. Simply divide the selector into N/ c logN blocks of

clogN elements and RclogN ports for some properly chosen constant c. The

Chernoff bound may be applied to show that the probability that a given block

has fewer than Rc logN active elements approaches zero exponentially in logN.

Even when multiplied by the number of blocks, this value still approaches zero.

Thus with probability approaching one, all blocks have at least. enough active

elements to connect their ports. Each block may then be connected separately

0 using t=RclogN tracks and maximum connection distance d=clogN.

Not surprisingly, the constant c is fairly large for this simple scheme. In the

proof of the next theorem we propose a better scheme which is nearly as easy to

implement, though more difficult to analyze. For values of R near j5, the corn

stant is one to two orders of magnitude smaller. For example, if p=0.9 and

R=7/6=0.675, the simple scheme requires c z308 while the schenio presented

below requires only c-2.4. Simulation results for these values of p and R and

three fixed values of N will be presented below.

Theorem 2." For any rational number r <-p, let, w>0 be any constant such LhAt

pcxp'vwr).4-(-p)exp'-iw(1-r)) <!. (2.2)

Then for any 0<6<l it is possible to connect K=rN1-O(logN) ports to distinct

active elements of a linear array with prob;tbility 1-0(A'-1/6), usinn a nmaximumn

connection distance

-7-



d = [rw6)-1logNJ

and number of tracks

The fraction of elements connected, R=r-O(N-IlogN), approaches r.

Proof.' We first verify that w exists for r<l-p. Let f(i) =

pexp(uwr)+(1-p)exp(--w(i-r)), the expression in (2.2). Note that f (O)=I.

Evaluating the derivative of f (w) at w =0 we find

daw-f (0) = Pr -(1 -P)(0 --r)

<0

since r<l-p. Thus there must be some w>O such that f (w))<1.

Now we describe the selector. For the given r choose the smallest integer

b such that rb is an integer. We assume that N>>b and divide the array into

iN/1bj blocks of b elements. There are fewer than b elements left over; these

are ignored. Locate ports above the first rb elements of each block, as is shown

in Figure 1.2 for the case r=2/3, b=3. The other elements of each block will

serve as "spares." Let d and t be defined as in the statement of the theorem. A

port may be connected to the element below it or one of the next d elements by

means of the wiring tracks and crosspoints as shown. This arrangement

requires at most t wiring tracks and a maximumn connection distincc d.

The connection procedure is as follows: starting from LI.,- hcrN., ,coi,;ect ct,..

port to the. lftmost, previously unused, active element zinn:,, " Ar" to

which the port can be comnected.

Let ( denote the number of ports in blocks 1 throu-gh i , C.!' hh C,., -.-

nected to subequo'n}L NocIs"(see t"igur,.2 ,2). I'he procedtr xtr , :.

of the folloiving circunlstLances:

O8



(A) All d+1 elements to which some port can be connected are either detective

or have already been used. Because the procedure gives priority to the

leftmost unconnected port, the next Irdj ports are also, as yet, uncon-

nected. Assume the last clement within distance d of the port is in block i.

Then, allowing for active spares in block i, 1 + 1+[rdJ-(1-r)b >

rd-( i-r)b.

(B) End effect: the last Irdl ports may not be able to connect to their full set of

d elements since the array ends before their distance constraint runs out. r
£ *

By not employing these ports, which reduces K by only O(logN), we can

Ignore this problem.

Thus if there is no q-grd-(1-r)b, l•i-jN/bj, the procedure will success-

fully connect the ports.

Let Xj=rb -(number of active elements in block i). We have the following

recursion on C:

Co- 0

= max j c1 _.+x 1 , 0 .

Lot S•m => Xj. Since the Xj are independent and identically distributed one

can show [10] that C is distributed the same as

max 0 O, S1. S 2 ... S. (2.3)

We apply the Chornoff bound to P(Src-(1--r)b). For any XcJXd let

E''we17xp(ivX)

CXPOIRbI) (P + (I -p )exp(qIi;)

Note that () by (2.2).

The probability that tIce provedure fails,

Ppe I)Qýýrdi -r)b for sornect=1 <

[.9



llgiia x S&>ýrd -(1 --r) b by (2.3)

(=1 k=I

_ IM bl ex%(._w(rd_(1•r)b)lk•w) (Chernorf bound)
= • x-p(')-) I -k (•)

' exp(-w(rd-(1-r)b)) 1N-(w) L- 21

=O(NI-116)

for the given value of d. This completes the proof.-

The connection procedure ernploy6d in the proof of Theorem P, is clearly

suboptimal since a port cannot be connected to elements on its left. -An

improved scheme which connects each port in turn to the leftmost unused,

active element within the distance and track constraints is harder to analyze

asymptotically, but can be used for simulations. The results of some simulations

using the bidirectional scheme arc shown in Figure 2.1. We note that both the

suboptimal and improved procedure require O(N) steps.

- 10-



1.0
N =16, K14

0.8- ____

00.6 N 512, K=448

W 0.4

"" .264,. K56

0.2-

1 2 3 4 5 6

d t

Fig. 2.1: Yield over 1000 trials for an N element selector with p=0.1, R=7/8 and
d=t as indicated on the horizontal axis.
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3. Pairinp, of Two I'arallcl Arrays

We now demonstrate that parallel connection of two linear arrays requires

only constant d and f.

Theorem 3: For any r<p =I-p and R<r it is possible to connect K=RN pairs of

active elements from two N-elemcnt arrays with probability approaching one

exponentially in N using a constant number of tracks and constant maximum

distance

d,t = -

Proof: We propose a scheme under which the expected fraction of elements that

may be connected is r.

Let

b = Vnp (p _r) -2/ 21

Divide two linear arrays into blocks b elements wide and provide t =b tracks

between them. Choose any block of one array and let X be the number of active

elements in the block and lot Y be the number of active elements in the facing

block of the other array. No matter where defects occur in the block, we can

connect minýX,Yj pairs of ,active elements with the tracks provided and max-

imum distance d-=b.

Since X and Y are independent and both binomially distributed with param-

eters [b, P],

E2(1X-Y1) 5< E(X-Y)?

- :V~ - 2E(X-bX)E(Y-EYY) + E(Y-EY) 2

- 2 Var(X) ý 2bpp.

Then the expected number of pairs which can be connected in each block is

E(in'dn,\, YJ) - A'X-E(rna~xlOX- Yi)

b r.

-12-



The expectud fraction of elements which can be connected Is thus at least r.

Since the defects in each block arc independent and R<r the Chernoff bound

may be applied to show that, with probability I-exp(-cN) for some constant

c >0, a fraction R of the elements can be connected.-

- 13-



4. Chains Connected From a Two-dimensional Array

The problem of connecting a chain of active elements from a two-

dimensional array is closely related to percolation theory. Percolation

processes have been studied extensively since they were first deflned by Broad-

bent and tlammersley [ I],

The site percolation problem concerns an inftnite lattice of sites which are

empty with some independent probability q and occupied with probability

~q=-1. A site is said to percolate if it is a member of or adjacent to an infinite

cluster of occupied sites. Broadbent and Hanmmersley demonstrated that the

probability of a site percolating is the same for any site, and so may be

expressed as a percolation probability function R(q), which is monotonic

increasing and attains the value 1 at q=1. They also showed that R(q)=O for q

less than some critical value characteristic of the lattice.

Little else of an analytical nature is known about R(q), although Monte

Carlo estimates have established empirical curves for various lattices [12]. The

curve for a square lattice is reproduced in Figure 4.1.

9.00 - I

0.11

0.6

R(q) 
0.4

0.2

0 16 0.24 0.32 0.10 0.43 0.5 064. 0.72 0.80 0.ý,S

M"g. 4.1: The percolhiion function R?(V) totr the squaro lattice as deLer'mined by
Monte Carlo estirnat,;. (F"roni Fig. 6 of nrisch, ]lamrnor'slcy and Welsh ý12]).

Our scheme for connecting a chain from an array may be analyvzd using
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some resulLs in percolation theory, contained in the following four lermmas. We

restrict consideration to a square lattice, though the rasulLs readily generalize

to others.

A site percolates unless it is enclosed by empty sites. An wnclosing u.Wk is

deflned to be a closed self-avoiding walk on empty sites; diagonal as well as hor-

izontal and vertical steps are permitted since such a walk is capable of enclosing

a site. Lemma I bounds the probability that a site will be enclosed, and thus the

percolation probability.

Lemma 1: For a square lattice, if q<(j/7)exp(-2/3)tO0.733. then R(q) ;

.- (945/ 4)q 3 .

Proof: An enclosing walk starting from a given site has 8 choices for the second

site and no more than 7 choices for each subsequent site. Thus there are fewer

than (8/ 4 9 )7 L distinctly shaped enclosing walks of length L. Furthermore, there

are no more than (L2/ 8-LI 2+1) translations of a walk of a certain shape which

enclose a given site. Each of the L sites in the walk must be empty.

The probability that a given site is enclosed by an enclosing walk of length

at least L0>-4 is no more than the expected number of such walks, which by the

above arguments is less than

L (8/ 4 9)7 L(L2/ 3-LI 2+ 1)qL

LL (i/49)(7q)OLL
L=~L0

< (1/49) f ('7q 2(j.2

LO- I

1(3/.9)(7q )(7"g-0-9/1l,:, (• )+5/ o•2(7,)-•/ og(7q)]

The second incqualit.y is valid bceause for . <(1/7)exp(-Z/ 3) the terms of the

-15-



series decrease monotonically for L;Ž-.

Since an enclosing walk must contain at least 4 sites, 1-R(q) :;

(135/ 28)(7q)3, which yields the resul,.i

We now prove a convergence result for the fraction of sites that percolate.

Lemma 2." Let X be the number of sites in an NxN section of the infinite square

lattice that percolate. If q <(1/ 7)cxp(-2/ 3), then for any r<R?(q), P(X!rN2 ) :

O(N-2 ).

Proof: Let A and. B denote the event that site a and site b percolate, respec-

tively. Let d(a,b) be the Manhattan (rectilinear) distance between a and b. Let

W denote the event that there is an enclosing walk surrounding a or b of length

at least d(a,b)/2, and ;YC its complement. Note that there can be no overlap

between a walk of lengqth less than d(a,b)/2 enclosing r an&a walk of lengrth

less than d(a,b)/2 enclosing b. Thus P(A,B) = P(A,B,Wc) = P(A,LjW')P(t)

= P(A I IYI)P(B I fYC)P( 'i) - P(A)P(B)," P WC) P(A)P(B)[j+P( W)/P1 wc)].

In the proof of Lemma 1 it was demonstrated that the probability that a

given site is enclosed by a walk of length at least L0 is less than cj( 7 q) LO for

some constant cl. Thus P(W)<2ci(vJq)d("'b). We can therefore choose con-

stants do and c2 such that if d(a,b').-do then P(WYc)-c 2,

Finally, note that the number of sites at distance d>O from a given site on a

square lattice is 4d. We can now upper bound the variance of X as follows.

Var(X) Y PA!)-fPA)
a b Ia J

S2 •D P(A,D,) + X, P(A)Ip(13)1 +POY)/P,(Wc)J- (

ci(u.b)<.j)

,. ý:-) + •, (4)2cj (•V-7-)'J/C2
So d=C d=d0

O(N 2)O(:) + O(N 2)0() ) z( O(N).



The expectation of X is IEA'=NzR(•R'). By Chebyshov's Inequality.0
P(XtrN2) P( IX -AX EX-rNl2)

SVr (X)
(EX-rTN

2)2

=O(N 2)..

Lemro•a 3: Suppose 9 <1/7. Consider those sites within an NXN section of the

infinite lattice which are members of infinite clusters of occupied sites. Except

for a fraction O(N-tlogN), these sites form a single cluster within the NxN sec-

tion, with probability 1-0(N-2 ).

Proof: It is known that on an infinite lattice, the set of occupied sites contains

only one infinite cluster, with probability 1. (Proved in [13] See. 9 for bond per-

colation, extended to site percolation in [14]). However, when the NxN section

is removed from the infinite lattice, the part of the infinite cluster lying within

the section may be disconnected into several components, separated by self-

avoiding walks on empty sites (not necessarily closed). By arguments similar to

those in the proof of Lemma 1, it is easily shown that the expected number of

self-avoiding walks on empty sites starting at a site within the NxN section and

having length at least Lnax=-4log(N)/log(7q) is O(N-2 ). Thus with high proba-

bility, only sites within Lmax of the boundary of the section can be cut off from

the rest of the cluster. These sites account for a fraction O(N-'logN) of the N 2

sites.-

Lerriarnr 4: For each i=!..., n, let A be the ev'.enL that everYr site in some finite

non-empty set is occupied. For each jz1., ... in. eLt Rj be tLi,, event that eve'y

site in some finite non-empty set is occupied. No a:.; i.rnption about thOe

exclusivity of the sets is made. let A= :.,1 and B=- Olil:r. T '(,l Th)-I(,A),

The proof of this inLuitive lemma \NiHl be found in [13, L11ntna 4.1].
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We are now ready for the main result of this section.

7heorem 4: With probability l-0(N- 2 ), a chain of length 1=RN2 can be con-

nected from an NxN array with maximum distance

d = V[3/ log (ý- I?)/-c / log

for some constant c >0, and with one track in each channel.

Proof: The general idea is as follows. Group the elements into IV2/b square

blocks of b elements each. Choose b so that each block has high probability of

containing at least 4 active elements.

Each block may be considered as corresponding to a site on a square lat-

tice, and if the block has at least 4 active elements, consider the site occupied.

Using the previous lemmas, we show that nearly all sites are in or adjacent to a

single large cluster of occupied sites.

S A tree of maximum degree 4 can be constructed which spans the cluster of

occupied sites and all sites adjacent to the cluster, with all non-leaf nodes

situated on occupied sites. This can also be considered as a spanning tree on the

blocks. Since all "non-leaf" blocks have at least 4 active elements, a chain of

active elements may be formed by looping around the tree without ever hav.ýng

to connect two elements from non-adjacent blocks. (See Figure 4.2). The meax-

imum Mianhattan connection distance required is

d -53 -2. (4 2)

Only one track is needed between ehvnents to accomplish this. The centr':•-

tion of the spanning tree requires O(K) steps and the connection of ;unc.aits ,n

the blocks also requires O(K) steps since there are only a constant number nf

elements in each block.

For any choice of b, let q be thie probability that a particular blo.k contrt:ns

fewer than , active. elements. Then
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ELEMENTS DEFtCTIVE
ELEMENTS

(omitted for clarity)

0

ACTIVE
ELEMENTS.-.- r

ELEMENTS 
G

Mg. 4.2: A section of an array connected into a chain. Each block contains b ele-
ments, although only the active elements are shown.

q = ý [~b) plpll- -, 2b3p C -. (4-2)
t=O

Choose b so that <(1/ 7)exp(-2/ 3). By (4.2) this requirement is satisfied

by b=0(log-1p). For this value of q, we can apply Lemmas 1-3 to percolation on

an N/I xN/JVbý lattice of sites corresponding to blocks, as described above.

By Lemmas 2 and 3, for any

r < (4.3)

at least rN2/b sites will be membeors of or adjacent to a single clu.tcr, with pro-

bability 1-0(N 2). By the correspondence of sites to blocks, this means that at

least rN'/ b blocks are meimbers of or adjacent to a single clustter of blocks con-

taining 4 or more active elements.
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We proceed to bound the numbur of active elmenicnts in any such rN 2 /b

blocks. Chooso any

R < (4.4)

By a simple application of Lemmn-a 4, the probability that the number of active

elements In the blocks is at lcast RN 2 given that all the blocks are members of

or adjacent to a .4uster is at least as great as the unconditional probability,

whorc the elements of the blocks w-e considered independent. Since R<r-i, the

ChernofT bound proves that the unconditional probability is 1-O(N").

By Lemma 1,

R(q)p•>[1(9'-'/,.a

S[ 1--(9"$/ 4 )( ~b -,9)J0 by (4.2)

>p - cf? ,/ (4.5)

by (4. 1) for some constant c >0.

Combinint (<.,)-(4,5), we have sho,%ii that for any I? such that R <(-

or equhialent.ly

d > 'I3fog(j-)C) 10 io(P),
a chain of ]AN-' elenricnits can he connected with probability 1-O(NA-)..

The followingl exairnple illustrates the practicality of this scheme, SUpposc

each element is defective with probability 1)p 0.5. Choose b =9, and hence d=7.

The pirohabiliLy that a block of 9 elements has at. least 4 active elements is

q l .?IO . F1, m lI'gure 4.!, we see that for an infinite square lattice and this

of u , an.\y hlel: is: pt'act ically certain to be a member of or adjacent to a

Cust, r lT cI hr a finit- e a0x Mu IenL t rLMliwray, anid accordingly a !Ox 0 lattice eF

Sbiel A, tn OV\'..',t of 9", 9 blocks were members of or adjacenrt to the lar.gc.t

cl't,,;t,,L or wtfll. with , l rw mlOre active (leliments in 500 'anduril trials. (:i id

""dL! v, ':L 8 ).

-b OO

i] ~ ~~~\\v 'oli,'kidl,' 1thiS sc,•tloni by 1n,:ntioningl Ow, lprtobiwil of etertl'ld, Coillotv-

- 10-



Utons to the chain, or actually the loop, of elements formed by the scheme. If

two input/output pins are placed in any block, the probability is R(Qj) that one

or more elements in the block will participate in the loop, and the pins may be

inserted in the loop with connectionF of acceptable length. If this reduces the

yield too much, more sets of pins, or longer connections may be required.

0

0



S 5. lLatticcs Connected from Rectangular Arrays

Next we consider the connection of a square lattice from a rectangular

array. Before proving a result on the connection distance necessary for this

task. we present the following lemma concerning the scparability of the square

lattice.

.Lemma 5: Consider the graph corresponding to a KxK square lattice. Any parti-

tion of the K2 vertices into three sets A, B and C such that no vertex in A is con-

nected to a vertex in B must satisfy

m in 1,A]I, ,, T3 1B , .< _ý [g' ' C I I

The set C in such a partition is called a cutset.

In essence, the lemma bounds the size of the largest set which may be

disconnected from the remaining (larger) part of the lattice by removing only a

given number of vertices. It. is readily apparent that. choosing C, the set of

removed vertices, to lie along a diagona' achieves the bound.

The proof of this lernima will be found in 715]. A slightly weaker version is

proved in [16]. We now present the theorem.

ThM.orem 5: Consider an NXN square array with elements space unit distance

apart. Let K=RN,2 . Then for and 0<6<" the probability that a KxK lattice can

be connected tends to zerk, as O(ANdo-logN) unless the maximum connection

distance satisfies

1'-'of: The proof proceeds in three steps First we define sek of array elements

called grid.s'. T hen we show that tht'et is, with pro'bobdility ,ppr'oielun, one, ,k

grid i.itl all its clenient s d fectlive. I Inal ly, W• assun i (th cC i.-:Lte,'c of a dcfck-'

tive grid and use Ikernm ai 5 to show Ihhat if '5') is violated it is lot possiblU tO

COnle'lC' t aI iati Cc.

2?""I,



For any given N, K, and p, choose integer L such that

2+R •- LR > 2. (5.2)

For any 0<6<1 let

M N and Id "o(M+ 1)2. (53)

(IzJ denotes the greatest integer less than or equal to x. Likewise, rx] denotes

the least integer greater than or equal to x).

Grids are subsets of the elements of the Nx½N arraY consisting of M

columns of L blocks. Fach block consists of mxmr elements positioned as shown

in Figure 5.1. All blocks are lined up in one of L horizontal bands, Each block

column may take one of [.NV/MJ-rn+l horizontal shift positions within fixed,

non-overlapping regions.

This is made precise by the following definitions. Let e. be the element in

row x anud columnn y of the array. The j "I block column, 1--<j-<M, is a set

L-I jt111 I LINILII.rn
> = U U U

£-=0 x--x yV=LfV/Ll+l

where xj may be any integer

(j- 1)iN/ Mj+ 1 < xj --< ij.V/,VJ + 1--m. (5.4)

Thus there are LN/IJj-m + 1 choices for each block column Ci.

A grid is a set

M

jZ-i

for sorne choice of xj, xz ..... xV satisfying (5.4.). Thus there are

(iN//Ji¶J-,. + i)AI grids.

The i.f gap in a band of a grid is the arra, between the pair of blocks in the

i-1•" and it' block columns.

The width of the i01 gap is necessarily Lhe samc in any band and is givn by

23 -



9 X2 1 3 M+

N II I 1.- I H
LhIi J I I I

BAND 'I I I,
L I - _ I

II•r•1, . i.1 I: ii,II Im I

iI .I Iti I IIi I +I r

L i I' I IIo

+II

1 tI I I I I

I 2L j+1 (M-1)J+1 N

Mig. 5.1: TPhe structure of a grid. The dark squares represent mxnm blocks of de-
fective elements,

9i:- i i-(T n) (5.5)
N + -(x +m)i=M+1

I

It Is shown in Appendix I that with probability 1-O(N 5 -1og1N) there is a

grid all elements of which are defective.

Suppose thai theC miaXimlun connection disatance d satisfies

d <((m +1)/ Vý (5.6)
and that given an arbitrarily large NXA' array with a completely defective grid,

there is a way to cotnect a KxA' lattioc under conistrainit (5,6). We demonstritte

It contradm Lion

Let l'O be %sotine ziubsvt of thie R' connectod elemeWNt m-hich Is locatod

entircly between s3omc pakir of odJacorit bands (or above the top banid) mid which

..24-



is connected even after cutting all edges passing into the gaps, Then since 1'0

lies between adjacent bands,

I I V1 •N ([NIL] -m) < N•',,L. (5.7)
Also )(A Vi and Vu, 1-i tM+1, be the set of elemenLs connected to Vo in or

through the iV4 gap of the upper and lower band, respectively, of the pair of

bands surrounding V0.

It is shown in Appendix 2 that we may always choose VO so that for all i

j "i

Note that under assumption (5.6) on d, the connected lattice of elements

cannot cross over or enclose a block of mXra elements which are all defective.

(See Figure 5.2).

(m+1)/2

T T-
c + I ( 1) 12

rn ELEMENTS

lVg. 5,2: The shortces, eonnm.,ct.iois enclosin.• an 7nx<in. block of de1fecLive clu-
mnLts. AL least one connccLior RILIuSt be of l'1ci-,t il +d)/,* 1 .

Thercfore any elnw, nL comiccLed to VC thlwoulnh onie gap cannot be connected

through a differentL gPtk as well or else a block would be enclosed. In other

words, the -sels 11 and K• arc disjomnL for anyiv j. A typical case is sketched in

25i -



Figure 5.3.

442

Fig. 5.3: A set of connected elements VO between two bands and the associated
V j. The dark squares represent blocks of defective elements.

Furthermore, if the gap through which Vi is connected his width 9j, there is

a cutset of no more than gj(r.!+-1)/i '2 elements whose removal disconnuects V'

from the rest of the lattice. This is because 1- is connected only through the i1

gap, and since the given d is sufficient to penetrate only (m+])//'9 layers of

elements into the gap, by (5.6).

Noting that each connected element corresponds to a vertex in a KxK lat-

tice, we use Lemma 5'to upper bound Vj I as follows. Identify A V0 U U Y.,
joi

Casthccutset, andB = Ii,./lC. By (5.8), IBII-IIAH. Vehave

II~i llBll+llClI

2 by the lenmia2

_g2(M. +r ,/. + g,(-.)t3'/ (59)

as explined in the above p;trgrcAph.

Froni definitions (5.,) and ( o.;), or a glance at T'iurc F u , we have

- 26-



0 ICv 1 <2NIM 1i%J.CI4+1

<(5.10)Sal

Since there must be X4 active olements in the lattice we have

A4'= I IVolI+T ) I I xII
tat

"< - + 2• I(m .+ 1)2/ 4 + qj +'A')/ 2 by (5.7). (5.9)
jl j" i

< 2  Gm+ 1 M I - N under constraints (5.10)

L 2 f]
< _.2N2 + etA'Vc, giTV) by ('5.3)

<N 2

for sufficiently large N by (5.2), which is a contradiction.

We conclude that the probability that the lattice can be connected goes to

zero unless (5.6) is false, that is

d >t (m +1)/ vT

by definitions (5.2) and (5.3). which yictds (%5 1), completing the proof..

Unfortunately, Theorem 5 offers no lowcr bound.on the number of wiring

tracks f required bntw.fen ., C'i: cý1J-cturc that !=0(I) will suffice. If

thik; is the case, it is e••'." . 1,.:, !.i•..i :,'i(o. T is ind\I- ll that is

reqi.rc-1 To demrn*:I.! , i., ,' IV'".. • . ;'N array ink.c' .u;tre blocks

cO.' ,rni r, r ic: ; ;. r: C is proper', "'. oscn. th,

Ci.-::o bo. ) nd c, in ..'.. " ;,, , I?<F) thc prob,: , v that any

•, ".':.ir,- blo:'k ";;:i. :, .. ,: ,. , .' ' active! c1,n,•nL: ',::';i- to vcro

,- ,,,, 1t,•l o: • .'' " , " : '. . .' \ / .l g l c 's ): rubab~ility

, .r tM .mi, .. :.'. '. .nts, lso tL ild: lo ,,'ro W . Lhere-



9fore suppose that a V7?kclo-giVxvq/?clo`,gA sublattice can be coyinected in each

block with rnaximrriu connection distance 0,(V'o-g-N). Bly providing 7co.

tracks between adjacent blocks, which does not affect the order of grosth of the

total area, we can certainly connect, the sublattices into one -./J7Nx~iNr~ lattice.

Leighton and Leiserson [7] have proposed a scheme which can connect. any

fraction R<f5 of the elements with probability -1/ N us ing

d 0( V1-ogN loglogA') and t =O(IoglogNV).

If the restriction to arrays of unit-square elements in Theorem 5 is relaxed,

the following, Corollary may be demonstrated,

Corollary: Consider and NXN rectangular array with elements of area A.. Let

K2=RN2 . Then for' any 0<6<1, the probability that a KXK lattice can be con-

nected tends to zero as O('N6 -11og,4N) unless the maximum connection distance

satisfies

The proof is basically the same as that of Theorem 5, and will therefore be om-it-

ted. One differcnce is that the rn-elemnent by rn-element detective block-s rnusý.

be replaced by rectangular mhr. blocks so that each block is still appro,ýi-

mately square in termis of physical distance. The iog4N terrn in the 1),,und ur-.

the probability of connection, rather than the. lo.g2iV term in Theorcm ý., ocu-

because of Lhc. U`¶ term in WAl.7) 4-1 1110t be proportional toi tkh-*ý **o.

numbcr or elemnent n on a %vertical -. do o' a detective block, nr lti ,v --.

O(iogA') as comparcd NN itli rn.:((.F6-)

Thompson i'7 1 li~ propo.ý(c' it V I SI maodel in t~hich Hi.i! oi*:t

must, incnroasi. linemrly '~ti h Llhc li1 of thu Ion1tgst. %% It.' it (I: ,.:

justiflcct I-)) noting that thec c pt1c'rtrwco o-f ai wire. hicL'~~ in

length. The drii ' curie -nLt ic dc( i to i ar' or ;'(Ii~~,r Ihr . it



interval, and hence the area of the driving transistor, must therefore increase

linearly with wire length. We therefore suppose that A, =fl(d). Substituting this

into the result of the Corollary, we obtain d, A• =O(logN).

These bounds may be achieved using selectors in the following way. We

make the elements of width 0(1) and height O(logA), and arrange them in K

rows of N elements. Between each pair of rows, we place two selectors, one con-

nected to the upper row of elements and the other connected to the lower row.

The selectors share a common row of K ports positioned between them. The lat-

tice can be connected if a chain can be formed in each of the rows of elements

and if every row can be connected to the ports above and below it by the adja-

cent selectors. The probability that this will be possible can easily be shown to

approach one in light of the discussion of the linear array chain problem in Sec-

tion 1 and by Theorem 2 with 6 chosen less than 1/2.

Further work may be focussed on inventing a connection scheme with

d=O('VJo-gN) and t=0(1) or, alternatively, substantiating the assumption that

the area of a driver must increase linearly with wire length.
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Appendix I

We show that a completely defective grid exists with probability tending to

one. Let B be the number of grids G containing only defective elements. By the

Chcbyshev inequality,

Var B (tIP(L? =0).-- P( I B-EB I L-B)- t5Va B 'A-1

We upper bound the variance as follows:

Var B E Z p ll11 uC2 l + Z - P OIIC 2II+IIG21I - p II10 I1

01 02 C 0C2n C,

Taking advantage of the restriction that G2 intersects G, we assume the iV

block column is the first which overlaps, and expand the suim over G2 into sums

over the possible horizontal shifts of each block column in G,. Let Cj and D.

denote the set of 'lein"n", Ln the jth block column of GI and G2, respectively.

Then

Var b" ...

01 i=1 DI: Di_.:
CnDj=O _nD_=

: D+, DR
C1 nDj 0

Note that the telescoping sums over the D,'s can be made a product of

sums. This enables us to treat each sum separately, and upper bound. them as

follows, For the terms 1Iej <i,

X I -1 Ii -m+ (A1.2)

9 since there are this many horizontal shifts pos.ible.
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For the ith term, letting k be the number of columns of elements in QrDt,

Sp-11CnD,,, < p-Lnz +2 1 p-Lmk

LC nD4 v0

P-L, 1 + 2Lm L
1 1 _- ,

<P -iLn p J (Al.3)

since m•! 1.

For the terms i>ja-M, we can just add (A1.2) and (A1.3).

E P-11cinDill < IN-•m+1 + p-LML'IPI.(14

Bounding the terms jvi by (A1.4) and the igh term by (A1,3), and noting

that there are [ I -m+l] possible grids CG and M possible first. overlapping

block columns i,

Var B < [NI -m+l P2LAhm2lI

JJ!- J-M 1+p-L[2--1-- J (A 1.5)

The expectation is

EB , 116 11
C

+ 11j.LMM (A1.6)

Bringing together (A1.1), (Ai.5) and (A>.6),

P(BO) Viar B
E2 B

0 1÷ p ,- ' ... J -I •

AtM[+ +I P ~~ llpLJ me+

Af-i



since p-L"e - N6 from definition (5.3), and LN/MIJ+I>N/M. Making use of the

0 relation (l+x)A! • exp(Mx) to upperbound the first term, we have

(AI1)f 141______
P(fJ=O) < _XP -I, jN_ -N (aI27)

- O(Na-'logON)

since M=O(logN), m=O(,/Fo6g--") and L is a constant. So the probability that

there is at least one completely defective grid approaches one.

Appendix 2

We wish to show that there is a V0 such that all Vi constitute the smaller

side of the partition induced by their respective defining gaps; that is

IY1OU U 1'II• II II for all i. (A2.1)
I,e"

S We begin by choosing some subset of the connected elements which is

located entirely between some pair of adjacent bands (or above the top bana)

and which is connected even after cutting all connections passing into the gaps.

Call this VO, and let the corresponding ý Vi be as defined following (5.7). Note

that since there are K2 connected elements, H VO J jII = , K2 Thus there

can be no more than one Vi with I I V I I>K 2/2 and one of the following cases

must apply.

GCris 1: Suppose that the chosen 1'o is such that I 1 I 1 1:K 2/2 for all i. Then for

all i, III< K2-! 1V 1o'J I Iso that the chosen VO satisfies (A2.1).
j ot

Ci-se 2. Suppose that there is exactly one I' such that >K l' I >12/2. Then we

choose as ýi new V1' the part of V, which may be connected to V() by passinm

through only one gap and is located entirely between two bands. (See Figure

A2.1). We repeat this procedure until Case 1 applies to the current. V'.
Srepeat



0d

.Vi@V

•i- .'..;'!vo ...

Fig. A2.1: The definition of a new Vo' from a given V1. C is the set of connected
elements in the gap, whose removal must separate Vo from V1.

We demonstrate that the procedure must terminate as follows. Let. C be

the set of elements in the gap. By the argument following (5.63), C is a cutset and

(I CI C12+11 Cj 1)/2 is much less than K2/2. By Lemma 5, either [IVDgujV -

(I I C12-I1 C1 1)/2 or IJ I (I I jCl2+l 1Cl l)/2. (Note that Ccl1). Since in

Case 2 II V4 >K2/•2, it must be that

I IVoU L) I I + I IC l I (I I C l 12 + IC 11)/2

< K2/ 2.

Thus the procedure can never return through the gap from Vo' to V0 and we can

be assured that the procedure will never repeat a choice of VC. Since there are

only a finite number of possible Vo, the procedure must terminate, yielding a

choice satisfying (A2.1).

0
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Optimizing Delayed Branches
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Abstract Software techniques can be used to reduce the delay time
associated with a branch. A software approach can also eliminate

Delayed branches are commonly found in micro-architectures. A altogether the need for the hardware that detects the branth and
compiler or assembler can exploit delayed branches. This is prevents further execution until the successor is known. Since
achieved by moving code from one of several points to the some number of sequential instructions following the branch ame
positions following the branch instruction. We present several always executed, the branch optimizer must reorder instructions
strategies for moving code to utilize the branch delay, and discuss or insert rno-ops to prevent the undesired execution of instruc-
the requirements and benefits of these strategies. An algorithm Lions. Both the RISCs and MIPS6 architectures have no hardware
for processing branch delays has been implemented and we give branch delay so sich a tc,;hnique is needed. Thlie IBM 80.1 uses a
empirical results. lhe performance data show that a reasonable strategy that allows either hardware branch delay or execution of
percentage of these delays can be avoided, the sequential successor of the brandc instruction7,

Introduction There is an additional argument to consider in optimizing branich

delays at the microprogram levol. If microcode is used to directly

Recent research has focused on the relationship between support high level language featmrcs, special attention has to be

compilers and computer architecture, The importance of given to braich instructions. These instructions are extremely

computer architectures as hosts for compiled code is recognized frequent: benchmarks show that 2s-30% or the Instructions

as a dominant factor, and modern instruction sets are designed In execated in some architectures are tWkei: branchesl, Branch deliys

W close interaction with compiler writers. This development allows are a dominant factor in machine slceea ,ad branch instructions

functionality to be provided either in hardware or in software1. are a major time cousumer due to their adverse effect on
pipelining9 . Optimizers that climbnate the adverse effects of

Mmranch instructions are a major obstaclc for piptlined machinesg branch delay could be used to introduce branch Instructions that
Most modern machines I)rerctch instructions before the preceding are optionally delayed, or even branch instructions that olways
instructions have been completedi If one of the executing execute their sequential successor. The attractiveness of these
instructions was a branch instruction, the ,equential succcssor of choices depends on the effectiveness of optimization techniques
the branch ini•trwtion might not be the. next instruction to be lk hs rsmdI hsppr

executed. If pipclining is also employed at the micro-instruction

level, dte micro-machine faces the same problems2. The problem

Conventional architectures employ additional hardware to cope
with this problem. They detect the presence of a branch In the following we will use the term branch Instruction to refer to

instruction and delay prerctching until the branch condition has any instruction which changes the control flow. This includes

been evaluated and the correct successor instruction has been conditional as well as unconditional brancoes and also imp

obtained. Many pipelined machines with instruction lookahead Instructions (which are called supervisor calls on some nimchincs).

use a branch prediction scheme to reduce the latency of obtaining
the succcwor instruction. Most micro-architecturcs do only Delayed brnnches

limited prolletchiog or do not support this feature in hardware at In a pipelined machine, instruction 1 is fetched and started befor.t
all 3; they require that -, be adhered to In software. This task some of its predecessors 1-1, 1, have completed. This strategy
bccoinc" increasingly difficult in the presence of multiway jump causes problems if there are data dependencies between these

instructions4. instructions11 , In this paper we are concerned with the related
problem, called delayed branches. Informally, a delayed branch
of length n means that the n instructions following the branch are

ne .IPS projcm has btcn suplotd by tho rIkeic Adyanced Rescamh Pr)ojeIs always executed whether or not the branch is taken.
Ajicwy undcr c'•tratl # MI)A9079 C-M6l. iitwa Crca Is suppoi•,•m by an 111M
Grklwitc t'cllowhlip.

0
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l)efinillon I: Ict instruction i he a branch Instniction generator might not know the hape orthe obJet pronamto,.
with target I. "Ihe branch is a dclutcJbmdch.with dclay For these reasons we optimize delayed branches in a post-pass.
it if the sequence of instructions executed when the Di appoach Also allows us to optnizc handwritten assembly
branch is taken is j 1+ 1. -. i+ tL L language programs or microcode. The algorithms and optimi-

The MIPS procesor has instructions with branch dclay I and 2. zation% in this paper cmo easily be adapted for use in a code
Indirect jumps have a branch delay of 2 as they involve a memory generator out will be the final Pam of aompiler.
reference. All other control flow instructions (these are direct
jumps. conditional branches, and trap instructions) have a branch Optimizing the delays
delay of . "Ihe RISC processorl has branches with delay 1.

We now discuss the algorithm for the treatment of delayed1 mwg 91. vi
l btua• P1, rO. L1Z branches. In this context we limit the discussion to conventional

3 sob &I. ro two-way branches. The extension to n-way jumps4 is straight-
4 loed y, ra
* add rt. ro forward. We consider only resources visible at the level of
6 L12: store ro. a membly language. i.e. registers; however our model can be

Figure 1: A simple example extended to include other resources as well.

Figure I gives an example. Assume that MO has initially the value Notations
I. If this code is executed on a machine with branch delay 1. the
execution sequence is: 1-2-3-6 and the value 0.will be stored
in location x. Definition 2: Let instruction I be a branch instruction.

We denote with t + the branch target and with r the
In many environments, the responsibility to deal with this location of the next instruction executed if the branch is
characteristic rcsts with individual programmer: instructions have not taken.
to be moved manually during the coding of a program. This
practice is error prone and not advisable if the instructions have Lo r ex1mpl . Truto I is branch= L and r" = 1+ !. Table 1 classifies diffcrent types of branch
different branch delays: it has to be automated if the instructions instructions according to our knowledge about the values of t+
are generated by a ccmpiler. and r from the branch.

Software solutions Group t + known r known

"The simplest (completely unsatisfactory) approach for handling branch
jump to subroutine yes not applicable

delayed branches is this : if the branch has delay n, then insertn jump dir uti

no-ops immediately following the branch. But branches are very

frequent in compiled code; padding each branch with n no-ops branch conditionally yes Yes
will result in exccsi-e program size even for n = 1. The
execution of Large numbers of no-ops will severely degrade trap no Yes
dynamic performance. Faced with only this choice, the hardware SVC
would be forced to implement branches so that only a time delay
is incured and no extra instructions are executed. The alternative return to subroutine no not applicable

software approach is to move useful instructions after the branch junip indirect

instruction and resort to the insertion of no-ops only when no Table 1: Control flow Instructlons
othet instructions can be found. If this sirategy is successful, the For trap Instructions t is unknown, since although we know that
Pwcqani may be significantly faster and only slightly larger. execution resumes at a predefined location in the operating

lhere are two possible ways to handle code moviement for system after the trap has been raised, but we have no Information
tkta)ed branches. 1he first approach puts the burden on the about the instructions at this brandc target.

V*de generator: the second apprnxch treats delayed branches in a The branch delay optimier must also know the iaais of the
Mtpass after a Mandard code gncnraint m phase. relevant resources upon entry into a basic block. For each basic

S•rtnal problenis arise with the first approach. Code generators block III. IN(l1) is the set of acaisters which iailit be referenced
afe normally fralrly complex: adding this additional task nakes bi this block or any succso)r before they are written. The

Wcde generation even more cumbersome. Ibis strategy also compiler providcs this infornation: it is readily available in a

t'•Nuires that the output from the code generator is indeed the compiler front the register allocation routines.
frul and coirect xuence of ins~tructions, This assumption is not bThe information conwined In IN(fl1 ) must be conservatively
-111has tw-iihle or feas•ible. Fu'r exam~ple, it makes peephole correct in the datallow sense: at entry into bWic block j any
i'PaUilation difnfiult, if not Imtrpu ible. If •tiic are other pipcline register that could he read before It Is written on any execution

""htiaints or if somc iabtruction packing is done, the codo path starting with basc block j muMt be in the sct IN(II). The

II5



accuracy or the sets IN(9j) depends on how the register allocation Thie effect of optimization I is a simple movement of the.branch
process is done. If the compiler is using a global register allocation instruction. No no-ops have to be inserted, and only useful
scheme, the information can be taken from the results or the data instructions are executed, whether or not the branch is taken. This
flow analysis. In the case of a simpler allocation scheme, e.g. is an improvement in time and space over the default solution, the
allocating a variable to a register for the life of a procedure, the insertion of no-ops. In optimization scheme 2 the duplication of

* information- can be easily estimated with reasonable accuracy. If instructions does not reduce the size of the program over the no-
the information has to be gathered from an ill-structured op solution. However, execution of the code segment will be
assembly program, the information will be pessimistic. Ofcourse, shortened by n cycles if the branch is taken. The third
IN can be arbitrarily enlarged to make gathering this information optimization will always reduce the size, and will reduce the
easier; however, large IN sets will limit the effectiveness of the execution time by n cycles whenever the branch it not taken.
optimizations. Obviously, the first optimization is the most desirable. The

relative advantages of optimizitions 2 and 3 depend on the
Code motion objectives of the optimization and on the dynamic properties of

"There are three major schemes for 'dealing with delayed branches. the program. ir a branch instruction is taken k times and not
All three try to move useful instructions to the n positions after taken I times, optimization 2 saves n ' k cycles. Optimization 3
the branch instruction. They differ in the location from which will save n I I cycles and n units of storage. Compilers which are
they move the code and in the kind of improvement gained. mainly concerned with the size of the object program might favor
These three schemes are: the third optimization. If speed is important, optimization 2 Is

1. Move n instructions frorm before the branch to after the superior for all k ) 1. For loop-type branches, the relation k >> I
branch. almost always holds; a large percentage of the branches executed

in a program will be loop-type branches. The value of n is small (
2. Duplicate the first n instructions from t 1 - 3 ) for current processor implementations; hence, the storage

instruction at t~ -a+n instead. savings of optimization 3 will not be great.

3. Move the next n sequential instructions to immediately Not all the optimizations are possible for alt branch types as the
after the branch.

requirements cannot always be fulfilled. Unconditional branches
All movement of code is subject to the general requirement that don't cause any problems in practice. Unconditional branches do
there cannot be another branch instruction in the n instructions not depend on the preceding instructions. Therefore the delay
following a branch instruction. The udditional requirements for time can be fully utilized unless there are less than a instructions
each of the schemes are shown in Table 2. preceding the unconditional branch.

The restrictions on the resources in lN(fl) for the basic block The branch instructions from groups 3 and 4 are the most
_ which was not choosen guarantee that this optimization does not problematic. For group 3 (the trap instructions) t+ is unknown,
S change the meaning of the program. Only resources which are so we may have to assume that IN(t+) is thu set of all possibk.

"dead" outside of this basic block can be modified by registers. Of course, most trap routines will use a standard entry
optimii/ations 2 and 3.

Cnt...... Reauiaremcnms. Imrvemnt
1 Move n instructions from Always possible, but T10e

before the branch till after the branch cannot depend on tie Space
the branch, moved instructions.

2 Duplicate the first n t+ and IN(t-) must be known. Time - only when
instructions from t+ and The moved instructions cannot branch Is taken
branch to instructionl change any regis*ter Ri In
t+ + n instead. IN(t-) or affect mnemomy.

3 Move the next n sequential t and IN(t +) imust be known. Space
instructions to right The moved instrudlions cannot Time - only when
after the branch. change any register ItI in IN(t W) branch Is not taken

or affect memory.

Table 2: Requiremuents for optlimizatIoi
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sequence and the compiler could compute a smaller value of IN instructions from this location.
from that sequcnce. Likewise. the return instructions from group * If both t+ and r are known, pick one of them aid

4 usually employ a standard linkage convcntion. %o that we can wove instructions from there. Currently, if t÷ before
restrict the set IN(tW) to some small subtet. Furthermore. there .the branch location (i.e. the branch is backward), t+ is
are normally bookkeeping chores associated with procedure cetry chosen. For forward branches, r is selected.
and exiti Ibc stack pointer and/or the frame pointer inight have Whenever instructions are movcd, make sure that they
to be recomputed and registers may have to be saved. These don't effact memory or any register which is in IN(QI) for
actions can be accomplished during the branch delay time in a the basic block B1 which was not chdsen.
well designed calling convention. In such cases, the branch 4. )odify the branchatargot if step 3 moved k instructions

optimirAr should not attempt to reorder the code sequence. o Modif the t k instructions after the original

The algorithm 
target.

There is an additional reason for chasing scheme 2 for a
The handling of delayed branches is done on a basic block basis backwards branch: the code at the branch target has already been

but requires the use of the global information about future uses of analyzed and processed. Thus, instructions which can be moved
the registers. We utilize basic blocks which have no jumps into are already available and only a singla pass is needed.
them, if the basic block contains a jump, it must be the lM
instruction in the block. Optimization cost

Our algorithm recognizes the useful properties of unconditional
branches and handles them accordingly, Other types of branch oThis algorithm checks each instruction of a basic block at mostonce during step 2. It starts with the instructions directly before
instructions are treated as follows: our algorithm begins by th branch instruction and then goes on to the preceding
attempting optimization 1. If moving instructions from before instructions until n instructions are found or the basic block has
the branch instruction to (the locations) directly after the branch been eompletcly checked. Most of the moved instructions come
instruction (optimization 1) moves n instructions, then no further from the end of a basic block. a practcal improvenent would
consideration is necessary and the next basic block is processed. If
this strategy moves only k ( n instructions then optimizations 2 donein the se nt i ntat ion .Stp3n u re chiskinof

and/r 3are sedto urthr ipi-ve te cde.done in the present implementation. Step 3 requires checking of"
additional instructions. Here at most n instructions will .be

In cases where optimizations 2 and 3 are both possible, attempts considered per basic block. The search for movable instructions

to use optimi7ations 2 and 3 must be ordered. The decision would stops when an instruction violates the requirements in Table 2:
be easier if we had some knowledge about the miss ratio of the any remaining slots are filled with no-ops.
branch, Le, the number of times the brunch is not taken over thenumberan. ioe. thenumbroftimes the branch is ex . The aken operIn the worst case the time to process a basic block is proportional
number of times the branch is executed. There is an appealing to the sum of its length and 2 "n. Since the number of basic

heuristic that has been confirmed by numerous studies of boc In afprogramnis an lne funct the number of

program behavior- assume that backwards-going branches will be brocks the processingam for the ntire og

taken. Backwards-gzoing branches are almost always loop brncher oh proceing + Branh entire). roram is

branches (they always are in a structured program), and loop O(Number of instructions + Branch count * ). or linear in the

branches are almost always taken. Several studies have shown t program length. Thiis result compares favorably to the estimate of

forward-going branches are taken or not taken with almost equal the resources needed to implement a hardware basedapproach9.

probability'. Hence, optimization 3 should be preferred for Implementation
forward-going branches bemause it saves both time and space.

Next we give the steps for processing a basic block. We assume We have Implemented a compiling system and optimizer for

that any other optimizations are complete and the shape of the MIPS (Microprocessor without Interlocked Pipe Sages) an

block is determined, ongoing. experimental VLSI processor projectit. Currently.
1. Read in the basic block. If the basic block does not end with compilers for Pascal, Fortran, and C exist. These compilers

a branch instruction, leave the block unchanged and generate machitIe-langiage level instructions that ignore the
proceed to the next basic block. Otherwise determine n, the effects of delayed branches. 'Ibre is a branch optintier that
length of the branch delay, and obtain the set IN(B) for this implements the technique described above: it also provides
basic block, several other functions, such as limited intuction collapsing and

2. Try to move n instructions from before the branch compensation for resource iterlocks.

instruction to after the branch instruction.

3. If step 2 moved only k with A < n instnrctions, move it-k
instructions front somewhere else:

a If only one location, either t' ocr 6 known, move
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MIPS Instructions 4. Puzzle I, 11, and Ill, three versions of the infamous Puzzle
benchmark12 that recursivcly solves a cube packing

Thle original design r'or the MIPS architecture envisioned abecmr"ta rcusvlsoesa uepckn
ilicoriina desgn or he IPS rchtecure nviiond aproblem; the versions differ in their use of register variables

branch delay of two for all control flow instnrctions. The high probled th versions differ in their treater of

frequency of branch instructions in the output of the code (employed in versions 11 and 111) and their treatment of
arrays: versions 1 and II access array elements by indices,

generators motivated a redesign, now only those branches which version I an ansformdt eloit a dvt eso

* involve a reference to memory have a branch delay of two. All the addressing mechanisms.
other branches have a delay of one (see table 3).

Grro.p_ Delay Time
branch (pc relative) 1. 1 1 i4 a. re 1 10 a. to

imp direct (absolute) 1 2 1 mov #0. r13 I may 0. r23

jmp via register 1 3 1 bie re. M13. k3 1 bit rO. r13, L3
4 1 no-op I sub 81. rIZ

branch conditional 1 5 23 Ll:aub 1, rI2 U3 L2:st M12. 3($p)
6 23 at rI2. 3(sp) 23 St r13. 2(sp)
7 23 at n1a. 2(sp) 23 Jar foe

mpaindirect 2 23 Jar toe 23 storepc 1(sp)

9 23 atorepc I(sp) 23 at rO. m(rl3)
10 23 at tO. no(l3) 23 add 01, rI3

Table 3: MIPS branch instructions 11 23 add 01. r13 23 bgt ri, r13. LI
12 23 bgt a. r%3. Ll 23 sub 01. r12
13 23 no-op I L3: ....

Effectiveness of the optimization 14 1 U: ....

Tables 4 and 5 give results for some sample programs. They have

been gathered by the branch optimizer and an instruction level Figure 2: Example for time saving

simulator of MIPS. The optimizer also performs other functions. Figure 2 shows an example. All branch instructions have a
like instruction reordering and limited instruction packing. The branch delay of 1. The execution of the code segment shown in

effects of these operations are not considered here. figure 2.a requires 211 cycles; this does not include time spent in

thA subroutine. Note that the procedure returns to the location
Space following the storepc instruction.

Table 4 is a table of empirical results for static data. It shows the The reordered instructions are shown in figure 2.b. As the first
number of branches for each program and the percentage of no- branch is forward, instructions from tr are chosen. R12 cannot be

ops that are removed after branches. For example, Puzzle I in IN(B) for the basic block starting at label L3; this register will
contains 124 branch instructions. With a branch delay of n, the be decremented regardless of the outcome of the test In line 3.

S 124 X n no-ops have to be.inserted when no optimization is done. This optimization reduces the size of the object program. The
The optimization is able to reorder the code to use 52.4% of these next branch (in line 11 of figure 2.b) is backward and Instruction.
instruction locations for a delayed bnrich of one and 47.6% of the from t+ are selected. The first instruction from ý + is duplicated
locations for a branch delay of two. ihe test programs consist of and placed directly after the branch instruction. Note that the

1. Fibonacci, a recursive implementation of computing a target of the branch has to be adjusted: the new target is the
Fibonacci number, second instruction of the block. labeled here for clarity L2. The

2. 1 lanoi, an implementation of the "'rowers of Hanoi" reordered version requires 188 cycles to execute, which is an

problem, improvement of approximately 10 %.

3. Queens, a program which positions 8 queens on a chess
board.

Program InstruCtion Branch t Instructions iltas viseo for delay
Piempae soup _ nti _ nructti I 1 2 3 4 5

Fiboanacci 44 to 90.0 65.0 s5o. 4".6 38.0

fanol 62 1 $$.1 00.0 35.0 3U.1 za.

Oazzezo I s09 13? 95.0 10.9 12.2 67.a 64.A

Puzole It 880 137 7.19 60.6 48.9 41.4 38.2

Puozle IIl $29 137 Or.0 76.2 61.8 63.3 80.1

Orceans 142 29 98.8 12.4 69.1 $2.0 41.6

Tnhle 4: Static improvements aflcr branch optimization
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Program Name Branch delay Reduction In One might argue that an unconditional branch at the end of a
basic block does not incur any penalty. Unconditional branches

Ftbonacci 76.0 % 13.7 % 10.2 % have the nice property that the preceding instructions don't
Ilona 60.6 1% 9.8 % 7.7 x influence the branch. Step 2 of the outlined algorithm can

S, Puzzle 98.0 1% 13.2 1I 10.4.% therefore move n instructions fR'om before the branch to a
location behind it. But if the basic block is short, there will not be

Puzzle II 78.2 1 18.0 1 18.6 It sufficient instructions to move.

Puzzle 111 95.5 % 13.5 1 19.1 %

Queens 87.6 X 14.9 % 9.8 %

Table 5: Dynamic improvements after branch optimization

'rest Loop Branch to Test
C om piler Interaction 

Condition 
a h T sRegister Allocation

We assume in this paper that the register allocation is done Loop Body Loop Body
outside the branch optimizer. Therefore, the final results
obtainable in this two phase scheme may be less than optimal.
"lhe code generator heavily influences the availability of movable
instructions. In Figure 3.a no instructions will be moved from
before the branch to a location behind it, Figure 3.b shows a
different register assignment that allows the first two instructions
to be moved.

Ird x, rt aanch toTest Toet Loop
Id X. r2 Ed K r Condition
add r2, rO add At. rO
Id y. r2 Id y. rI
bzero r2, anywhere bzero r2. anywhiero

(a) (b) L-ý ý 7
Figure 3: Register assignment (a) (b)

Unfortunate!y. the use of a large number of registers also has an
* adverse effect on code motion. As the set IN(ll) becomes large, it
W inhibits the movement of instructions in step 3 of the algorithm. Figure 4: Loop constructs

The first version of the C compiler treated loops according to
Loops scheme 1 as shown in figure 4. A modified version translated

There are two major schemes to translate high-level loop loops differently and used the second scheme; it also eliminated
constructs into machine instructions shown in Figure 4. The first branch chains. 'fable 6 shows the improvement gained ft!om this

scheme uses a tes' at the beginning and branches to this test after change. Column A shows the speed-up over the first strategy: Le.

execution of the loop body. The alternative approach tests the testing the loop at the bottom of a loop reduces the execution

condition after each iteration at the end of the loop body. This time of Fibonacci by 14.0%. Column 13 shows the improvements

scheme either tests the condition once at the start or branches to obtained by branch optimization for these programs when

tie test at the end of the loop to determine whether the loop is compared to the default solution, the Insertion of'no-ops. This

executed 0 times, column demonstrates the total speed-up obtainable.

The choice has a high imp-act on die quality of the reordering. Program Name Reduction of execution time
There are two reasons why the second scheme is superior to the Fibonacci 14.0 % 22.7 %

first.
1. It executes one branrch instruction less per iteration, In 116d 6.2 % 13.8 %

pipclined machines, this will result in substantially faster Puzzle I 5.3 X 16.1 1

execution, especially for short loops. Puzzle I1 9. ; % 24.3 It

2. No instructions from t+ can be moved, behind the branch in Pulzle 1.tl II,• 1 e,01 t
the first scheme if the test instruction is the first instructiorn

at t+. This restriction is a consequenco of the general Quo@" 9.1 1 16.0 2

requirecmet that two bianch'es be separated by the branch Tahle 6: Dynamic improvenrcnts after loop modification

delay instructions.
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Table 7 shows the contribution of the inclivdu~l optirnilatiofll; it 7, Radin. G. "Trhe 0 iioptr" fe
refcrs to the optimnizations in *'rabic 2. Fach column gives the SIGARCI!/SIGi'LAN Symposium on Architectural
percentage of no-ops rcnioved. Support for Programming Lan guascs and Operating

Systems, , ACM., Palo Alto, March 1982, pp. 39 - 47.
Name NO-OP3 remo~ved by

Op Wo~t3 Total 8. Shustek, L.., Analysis and Peiformance of Computecr
Fibonacci 50.0 0.: 25.0 75.0 Intrcto Sct. PhD dissertation, Stanford University,. Han 1 26.0 0.0 50.0 75.0 May 1977. Also published as SLAC Report 205.

Puzzle 1 44.4 34.1 16.P 96.1 9. Riscnian, 11M. and Foster, C.C., I1he Inhibition of
Puzzle 11 48.8 W62 22.5 so 5 Potential Parallelism by Conditional Jumps," Trani on

Puzzle 111 47.9 34.7 Mut 97.2 Comnputer, Vol. C-21, No. 12,Doc1972, pp. 1405 -1411.

Queens 35.2 8.8 $81 2.3 .10. Hecnnessy. JL.1 and Gross. T.R., "Code Generation and
'f~be 7 Conribtionof ptimzatonsReorganization in the Presence of Pipeline Constralints.
Tabl 7:Contibuion f Ot~L~~dtOUSProc. Ninth POIPL Coitferctce, ACM, January 1982..

Conclusion 11. Henncssy, J.L., Jouppi. NK., W flaset F., and Gillj., "MIPS:
A V`LSI Processor Architecture." P1roc. CMU Coilference

Compiler technology can be used to enhance the design of on VLsi Systems and Computations. Computer SrIence
computer instruction sets, to provide higher performance from Press, October 1981..
those instniction sets, and to allow the implementation of
schemes with substantially less hardware complexity. Branch 12. Baskett, F., "Puzzle: an informal 'cortputc bound bench-

delay elimination is or, example of a techniquc that is becoming mark". Widely circulated and run.

increasingly binportait. in new architectures.
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I PWPm of the PrOect
Ths pmject Implements a PLA minimizer using a novel look-ahead hcurlstic. The mnimir finds a

minimal cover fbr an Input PLA.

2 Prlm Statement and Termiolg

[Note: Until sectimon 4, we will discuss the case of single-output functions.]
Consider a Boolean fanction f, in sum-of-products form. We can write f in PLA format, representing

each product term as a line with its Ath element equal to
0 If the ith literal appears in that term In complemented form
1 if the Ath literal appears In that term in uncomplemented form
2 if the ith literal does not appear in that term

Example

f z1 z:3Vz 1 : 3,

In PLA format this becomes:
121
110

A cube is product term. We say a cube c is a prime implicant of a Boolean function f if it is a maximal
cube of f. (For example, changing any 0 or 1 to a 2 in a prime implicant will result in a cube that has
some intersection with 7.) A set of cubes is a cover (not to be confused with the verb "cover") for a
function if the two are the same for every assignment of values to the literals. A cover C of f is minimal
if it is an irrcdundant cover of prime implicants of f. By irredundant we mean that striking out any cube
of C will leave a set of cubes that fail to cover some part of f. Given a function in PLA format (in a
more general multi-output form discussed in section 4), these codes output a minimal cover for the PLA.

Example

f -- abvabcVaba

In PLA format, this is:
010
01
110

A minimal cover for f is:
002
210

3 Architecture and Implementation

Nlotc: Subroutine names appcar in small boldface type.
"ihcwc codes (Appcndix 1), implemented in C on a VAX 11/780 at Stanford, are stored in

'i,!v,:/,.,1i/t1h/PROGPROJ. Thc filc OVERVIEW.GRY (Appcndix 1) lists the subroutine hierarchy.

Best Available Cop0 2



3.1 Method: Top Lvevl maim mlmual do-thlnp

We first get a (possibly redundant) cover of prime Implicants. Then we eliminate redundant cubes

and thus have a minimal cover.
This final elimlnatioh (imdundantcover) Is straight-forward. We loop through the cubes and, for each

,;ube, see it it is covered by the union of all the other cubes in the function. If it is, we immediately

throw it out of our fonction. Clearly, the final output of this stage is still a cover of the. function (since

we only threw out cubes that were covered by what remained). Also, the output is certainly irrcdundant.

Suppnse that an output cube c was redundant. When we were looping through the cubes and got to c,

all the cubes in the output were there (and possibly some more). Thus, at that time c was also redundant

and would have been thrown out.
Now, let us discuss the important part of the algorithm: finding a cover of prime implicants (do..tins).

The crucial (though obvious) observation is:

Observation Let j be a NDC (non-don't-care: a 0 or a 1) position of a cube c.

Suppose that c raised in position j is not covered by f. Then for any cube d,

c C d, d raised in position j is not covered by f.

Proof Obvious. By assumption there is some minterm (a product term of all O's

and 1's) such that that minterm, m, complemented in position I is not in f. Since

c C d, m is in d, so raising d in position j will give us the same non-f min-term

as before. Thus% d raised in position j can not be covered by f.

Suppose we try and fail to raise a cube in some position j and then go on to successfully raise it in other

positions. The observation above tells us that we still can not raise position j. Thus, our routine, for the
"raising to primality" stage is:

Mark all NDC positions in the PLA "active"
while (there are still active positions)

beg
choose an active position p and mark It "not active"
/0 suppose that p is the .th position of cube i */
if (cube i complemented In position j is covered by the PLA)

raise position j of cube i to a 2
end

Any ordering of the active positions will give us a cover of prime implicants. However, we would of
course like an "intelligent" ordering that helps us contain and eliminate cubes as effectively as possible,

even if this adds some bookkeeping work to. our algorithm. Such a scheme is described in the next
section.

In summary, the top-level flow is:
beg

Initialize
Get a cover of prime implicants
Make the cover irredundant

end

3.2 The Look-Ahead Heuristic

Suppose we have a function. Recall that our goal is to contain as many cubes as possible. Thus, a
reasonable way of choosing a position to raise might be to first try raising the position that is "nearest"
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to letting our cube cover other cubes. This Is the Idea behind the "look-ahead" heuristic. More exactly,
at any time we raise the untried 0 or 1 that will let our cube contain as many ctubes as possible if
the raising succeeds. If more than one position Is chosen by the previous rule, we try raising the
one of these that will also bring us one "possible" raise away from covering as many more cubes as
possible. It thcre is still more than one candidate, we break the Ue by looking at distance three coveriigs,
etc. By a "possible" raise, we simply mean a raise that we have not already tried and failed on.

Example
Consider the function

000
001
010
011
100

The most desirable position under the look-ahead heuristic would be the leftmost position of the fourth
(counting 0 to 4) cube, since this is one away from covering one cube (cube zero) and two away from
covering two cubes (cubes one and two) and three away from covering one cube (cube three). Tied for
next best are the middle position of cube. two and the rightmost position of cube one.

3.3 Implementation, Data Structures

3.,1 The PLA

"The array p contains the PLA, In PLA format (section 4). Henceforth, we assume that-the PLA has

H rows and W columns.
The Boolean "active positions" matrix implied In section 3.1 is a. a[il[j] is true iff position j of cube

i is active: it is a 0 or a 1 that we have not yet tried raising.

3.3.2 The Scoring Matrices

To choose the next active position under the look-ahead heuristic might intuitively seem to be very
expensive. (A mindless implementation costs O(H2W2 ) per choice for a total cost over all choices of
O(H 3 W3 ).) However, by keeping various partial results, and carefully updating them as the minimization
proceeds, we can implement this more efficiently. (Essentially O(HW) per choice. Total cost over all
choices O(H'W 2 ). See section 3.4 for more details on the time cost.)

The crucial matrix that we will "use" is the Boolean (note: we assume 0 = "false" and 1 = "true")
matrix b (for "bit-wise containments"). "b[i][Uj[k] is true iff cube k fails to cover cube i in position j.
Though b was kent explicitly in early versions of this code, it has now been removed. A reference to b
is implemented as a simple function, bits, that checks the appropriate two elements of p. This approach
is a clear win. The time cost is the same ( constant per reference to b). The space savings are dramaticl
b was of size 12W. With b clminated, the* biggest arrays that arc left are of size max(JIW,1l). Thus,
we can minimize much larger PLAs.

Let Let r[i][j] = b~i[lk~lj]

That is, r'i][j] ("row sums") is the number of positions that keep cube j from covering cube i.
Let f[i][j] be true iff either i = j or cube j fails to cover cube i in some position where we have

tried and failed to raise j. That is, f[i][j] = true tells us it is impossible for cube j" ever to cover cube
i, except cubes are forbidden to cover themselves. f i][S] = false says nothing either way. f ("forget
about possible containments") is of size HxH.
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The "score" matrix will hold a value for each active position. The position with the largest entry in
the score matrix will be the next position to be chosen by the look-ahead heuristic. The double precision
score matrix is defined by (recall Booleans are 0-1):

.,.( i ,- (b[kJ[iJfiJ)(1 - f klJi])
k=o (originatH + 1)riki[tl

Note that H is the current PLA size and originalH was the original PLA size.
Crucially, we only use this nasty formula to initialize the score matrix. From then on, every time we

do something (raise a position, fail to raise a position, contain a cube) that will effect the scoring matrices,
we make whatever small changes are needed (section 3.3.3).

The score formula looks imposing, but it is really quite simple. The "originalH + V" simply imposes
a radix system on the scoring, with the dominant weightings going to the "close" cubes of section 3.2.

Example
Continuing the example of 3.2, the score. of the leftmost position of cube four is initially 1*(1/6) +
2*(1/36) + 1*(1/216) and the middle position of cube two and the rightmost posit;9: )f cube one each
score 1*(1/6) + 2*(1/36).

3.3.3 inplemientation of the Look-Ahead Heuristic do-failed do-no.cover do.we..cover compress

3.3.3.1 Failed Raisings do...filed

Suppose we have just tried raising position <i, j> and have failed. Well, we may now suddenly know
that cube i can never cover some other cubes (the ones that it now fails to cover in position j). Besides
basic bookkeeping (a[i][Ji = 0; s[i][jI = 0) this is

for each cube k other that i
if (i does not cover k in position j) and -(we did not already know that i could never cover k)

beg
note that i can never cover k
for each I so that position <i, D> is active

if b[k][lI[i] then asi][l] = s[i[I1 -1

end

3.3.3.2 Successful Raisings do..-is

There are two types of effects that successfully raising a position may have. First, things that used
to cover our cube in the raised part may no longer do so. Secondly, the raised part may cover the
corresponding parts of other cubes. Indeed we may even contain (section 3.3.3.3) other cubes.

Let us consider the effect of other cubes no longer covering our cube (do-no-cover). Suppose the posi-
tion that we have just raised is <V, z>. Then each cube Which used to cover cube y in position z and no
longer does may have its scores changed.

for each cube q that used to cover cube y in position z but no longer does
beg
increment the row sum r[yJ[q] /* i.e. it fails in one more position */
if we don't already know that it is impossible for cube q to cover cube p and <q, z> is notactive

beg
note that it is impossible for cube q to ever cover cube y
for each column j except z if b[][jJ][q] then
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e[q][J]--- slqfjJ -
(originalltM 1)), 1Y-IMI

end
else if we don't already know that it is impossible for cube q to cover cube y and <q, z> is active

beg
for each column j except z if b[yj[j][qJ

s[q][j] -= slq][] + *ilH+1)r -

s[q][m= -[q]z] + I' •
(orilln$61z + tr I'm'sl

end
end

Finally, there is the effect of position <y, z> possibly covering new cubes (do.we-cover):

for each cube n that cube y used not to cover in position z but now does
beg
decrement the row sum r[n][y]
if we do not already know that it is impossible for cube V to cover cube n

beg
/* remaining ones carry greater weight "
for each column j except z if b[n]lj][i ] and.position </,j> is active*[li ruii+ 1 1

en[d j o8[(li] +oinulli+j)rIn r (original"+*I(ui+1

end
end

3.3.3.3 Contained Cubes compress

Finally, we come to the question of how to find and deal with contained cubes. Containment can
only happen after a successful raising (say of position <y,x>). Any scores that have been boosted by not
covcring parts of a soon-to-be-destroyed cube must be decreased.
for 0 < d < H,d 3 pij do

if cube d is contained by cube y /* r[d][y] is 0 /
beg
for cubes i except p and d do

if we do not already know it is impossible for cube i to cover cube d
for each position j with (b[d][jj[ij and <i,j> active) do8[ilJ[l = ....jJ

81i(j =BM -(originotH+01)"Ml•

destroy cube d
end

3.3.4 Implementation of Peripheral Functions covers tautology

3.3.4.1 Covers

Suppose we are given a cube c (with d twos) and a function f. We wish to know if the cube is
covered (contained by) the function. Our approach will be to convcrt this question to a question ol
tautology. In particular, consider restricting all lines of f that intersect c to the don't care positions of c,
(This is the restriction of f to c.) Simply ask if this restriction covers c. That is, is it a tautology (equal
0to (0, 1



Example
c = 2120

S~ f --1110

1201

0220
Lines zero and three of intersect e. Thus, c is covered by I iff the following is equivalent to 22 (it isn't):

11
02

3.3.4.2 Tautology

Suppose we are given a function f (of dimensionality d), and we want to see if it is a tautology.
We begin by checking.for various trivial cases that will give us a quick answer. Then we use a counting
argument to Itry to get a quick answer. Count the number of minterms (0 dimensional cubes) contained in
each cube of f (this is 2number of twos in this cube ) and add these numbers. This gives an upper bound
on the number of minterms in f (the figure is exact when the cubes of f are disjoint). We can immediately
conclude that f is not a tautology if the upper bound is less than the the size of {0,1})" (which is 2 1). For
example

02
11

has a count of three so it certainly can not cover 22 which has four minterms.
If these techniques do not give us an answer, we want to reduce this d-dimensional tautology question

to two (d - 1)-dimensional tautology questions. There are a number of heuristics that we could use
to choose which of the d-dimensions we will split on. One way would be to try having almost equal
number of cubes in each of the subproblems. We use a slightly more interesting method. Split on
the dimension (say column j) which makes the sum of the number of cubes in the two subproblenm
minimum (that is, the column with the fewest twos). Split by putting all cubes with a 0 or a 2 in column
j into one subproblem and cubes with a 1 or 2 in column j into the second subproblem (and eliminate
column j in both subproblems). A very useful th~ng :hat we do is to solve the smaller subproblem
first. If this subproblem is not a tautology, then we can return the fact that f is not a tautology
without even solving the larger subproblem. Otherwise, return the solution to the larger subproblem.

Example
f =012

201
112

We split on the middle column and ask the tautology question for 21 which fails by vertex counting.
Thus f is not a tautology.

3.3.5 Error Checking

The program contains extensive debugging and internal consistency checks. These come in three
flavors, which are turned on and off by a switch line in the input file.

The variable dbg controls the printing of extensive debugging Information that shows the flow and
actions of the program. This switch should be left off by the average user.

More interesting is dbgerr. This turns on checks within the program for impossible situations. If
one occurs, the routine panic is called to tell the user what error has been encountered and given him the
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option of bailing out. The checks turned on be dbgerr are not expensive, so it should be left on by most
users. Needless to say, the amusing message printed by panic should never be seen by any user.

* Finally, the variable IRS turns on some very extensive error checking: after each attempted raise,
the values for all the. scoring matrices (except a) are recomputed from the PLA and compared with the
values currently in the matrices ( audit). This assures us that the complex score adjustment algorithms are
correct. This was extremely useful in debugging the program, as errors were spotted as soon as they were
introduced. However, this check is very expensive and should be left off by most users.

The exact method of specifying these variables is described in section 4.

3.4 Time Costs

3.4.1 Look-Ahead Time Costs

It is immediate from the algorithms in 3.3.3.1 and 3.3.3.2 that a successful or failed raising costs
O(HW) to choose the part and maintain the scoring matrices, excluding the cost for containing cubes.
At most HW positions are checked for raising, so the total cost is O(H 2 WI). The cost of containing
k cubes is 0(/HW). Each cube can only be contained once during the course of the algorithm, so the
total cost of containment adjustments is O(H 2 W). Thus, the total cost over the run of the algorithm of
the look-ahead heuristic is O(H1Vr).

3.4.2 Covering Time Costs

The covering/tautology costs are trickier. The worst case costs of our implementation are exponential
in the number of input columns of the PLA ( the non-tautology question is NP-complete). However, in
practise the covering question can usually be quickly answered. When the answer is no, all we have to do
is find some part of the off-set (or reduce to some problem that vertex counting can answer). When the
answer is yes, our search usually cuts off quickly since we can quit with a line of twos (and our splitting
heuristic tries to preserve twos and split away ones and zeros).

4 Multiple Outputs / Input Format: Using the Code

In real PLAs, we also have an output plane. This corresponds to having a number of Boolean
functions, which we allow to share product terms. We simply set the Ath element of the output
plane of cube j to 1 if the product term. j appears In function i, and we set it to 0 otherwise.

Example

/1 = lazza

ft - z 1zaVzzza•3

in PLA format this becomes:
121 101
110 110
112 011
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'The look-ahead heuristic is unchanged, except we must remember that, in the output parts, 1 covers
anything and 0 covers 0 but not 1. The covering and tautology extensions are straightforward. In covering,
we restrict our tautology check (and our selection of intersecting cubes) to the output columns that are
on in the given cube. In tautology we just modify the basis cases. (If some output component is included
in no cube of the fUnction, we can quit right away, etc.)

The input to the function is a file containing a PLA in the multi-output format described above, starting
on its third line. The lirst line should contain three integers. First, the number of rows in the PLA. Second.
the number of input columns. And finally, the number of output columns. The second line should contain,
in order, the debugging switches dbg, dbgerr, and IRS of section 3.3.5. A I means the variable is on (true)
and a zero means it is off (false). The suggested second line is 0 1 0. Thus a simple input file might look
like:

432
010
110 10
112 11
121 11
010 01

Blanks vwithin lines are ignored. The output file is of exactly the same format as the input filel
To run the minimizer, simply type "gry f1 f2" in the directory where the codes reside (SHASTA:

/vlsi/lah/PRQGPROJ). f1 is the input file and f2 is the name of the output file. (Defaults are "inpuLpla"
and "outpuLpla".)

5 Test Run Descriptions

W Appendix 2 contains script files of program sessions. There is a set of "simple" runs that minimize
trivial PLAs, and a set of "sample" runs- that minimize less trivial PLAs. Run times are included with
each run. The profiled runs "auditoff" and "auditon" show how our implementation of the look-ahead
heuristic (it takes 40% of the runtime) compares with the straight-forward implementation (where it takes
85% of the much longer runtime).

6 Comments and Conclusions

As it is extremely expensive to find minimum PLAs, we are motivated to find "good" PLAs. These
codes guarantee to find a minimal cover for any input PLA, and use a powerful look-ahead heuristic to
try to find a good minimal cover. The space cost. is 1ow, O(max(tFP, HW)). The time cost is low enough
to allow minimization of very large PLAs.

7 Citations and Acknowledgmcnts

This project was written during my research assistantship in Professor Ullman's VLSI group.

The only previous treatment of a look-ahead heuristic for PLA minimization that I know of is A
Comparison of Logic AMinimizalion Sirategies Using ESPRESSO: An APL Program Packagefor Partitioned

Logic Ahtininalization, by Prayton, Hachtel, Hemachandra, Newton, and Sangiovanni-Vincentelli, to ap-

pear in the Proc. of IEEE Intl. Conf. on Circuits and Computers, May, 1932, Rome. This paper discusses

an implementation of the look-ahead heuristic in a "local" sense. That is, we choose some ordering of
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the cubes in our function, and then go through the cubes in this order. Each cube is raised to a primeimplicant by using the look-ahead heuristic to choose the ordering of its parts. We also mentioned thatimplementing a "global" look-ahead heuristic was an area in which future effort should be focused.
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Abstract 3. The RISC project relies on a straightforward instruction set
and straightforward compiler technology. MIPS will require

viiI'S is a new single chip VLSI microprocessor. It attempts to more sophisticated compiler technology and will gain
-,heve high performance with the use or a simplified instruction significant performance benefits from that technology. bhe
.ct. ,rimilar to those found in microengines. The processor is a fast compiler technology allows a microcode-level instruction
;ii;0;vcd engine without pipeline interlocks. Software solutions set to appear like a normal instruction set to both code
.. ýeý,cral traditional hardware lroblemý, such as providing generators and assembly language programmcrs.

: e interlocks, are used. "he MIPS architecture is closer to the 801 architecture in many

Introduction aspects. In both machines the macroinstruction set maps very
directly to the microoperations of the processor. Both processors

\I 'WS (Microprocessor without Interlocked Pipe Stages) is a new may be thought of as architectures with micro-level user
* :ncr:at purpose microprocessor architecture designed to be instruction sets. Microcode is created by compilers and code

.t1p'cmted on a single VLSI chip. The ,main goal of the design generators as it is needed to implement complex operations, The
hi,:h ectbormance in the execution of compiled code. The primary differences lie in various architectural choices about

,!::hctecture is experimental since it is a radica] break with the pipeline design, registers. opcodes and in the attempt in the MIPS
*.,:i of modern computer architectures. The basic philosophy of instruction set to make all the microengine parallelism available at
%III'S t. to present ar. instruction set that is a compiler-driven the user instruction set level. Tlese attempts are must visible

:. g of the rnicroengine. Thus, little or no decoding is within MIPS in the following ways: the two-part memory/ALU
:.l acid the instructions correspond closely to microcode and ALU/ALU instructions, the explicit pipeline interlocks, and
, •:lcOt1•. "Ilie processor is pipelincd but provides no pipeline the conditional jump instructions.

'1'",. hairdwarc: this function must be provided by software. MIPS is designed for high performance. To allow the user to get
V, I I'S i achitccture presents the user with a fast machine with maximum performance, the complexity of individual instructions

* ,:2::.: I.tcuctio• set. TIhis approach has been used by the IBM is minimized. This allows the execution of these instructions at
Sr,,i'jctI and is currently being explored by the RISC project significantly higher speeds. To take advantage of simpler

. Ii.:A.cJcy-: it is directly 'opposed to the approach taken by hardware and an instruction set that easily maps to the
c.':urc~s such as the VAX. However, there are significant microinstruction set. additional compiler-type translation is

::fzr . hbtween the RISC approach and the approach used in needed. This compiler technology makes a compact and time-
I'..: efficient mapping between higher level constructs and the
I "lce RISC architecture is simple both in the instruction set simplified instruction set. The shifting of the complexity from the

.ucd (ihe hardware needed to implement that instruction set. hardware to the software has several major advantages:

.\thoiOugh the MIPS instruction set has a simple hardware * The complexity is paid for only once during compilation.
ip!^cnentntion (i.e. it requires a minimal amount of When a user runs his program on a complex architecture.
!" rd~nre control), thle user level instruction set is not as he pays the cost of the architectural overhead each time he

•',,i f'rward, and Lhi simplicity of the user level runs his program.
..L:li�'r si•. is secondary totthe pcrforrmance goals. * It allows the concentration of energies on the software,
? thrust of the RISC design is towards efficient rather than constructing a comples hardware engine, which

W:;cp!erertation of a straightforward instruction set. In the is hard to design, debug, and efficiently utilize. Software is
MIIS design, high performance front the hardware engine not necessarily easier to construct, but the VLSI envi-
.'- a primary goal, and the microengine is presented to the roonnent makes hardware simplicity important.
c,.d riser with a minimal amount of intbrpretatlon. This Thc design or a high performance VLSI processor is dramatically
n'.1kc., most of the microengine's parallelism available at the affected by the technology. Among tie most important design
11'UI octio set level. considerations are: the effect of pin limitations, available silicon

,)94.1895/ 8 2 10 00 0 / 0 0 1 7 500.7 5 © 1982 IEEE 17



area, and size/specd tradeoffs. P'in limitations force the careful architecture is simplicity or the pipeline structure. The simplified

dosign of a scheme fIr multiplexing the available pins, especially structure has a fixed number of pipestages. each of the same

when data and instruction fetches are overlapped. Area length. Because, the stages can be used in varying (but related)

limitations and the speed of off-chip intercommunication require ways. pipline utilization inproves. Also. the absence of

choices between on- and olT-chip functions as well as limiting the synchronization between stages of the pipe. increases theO complete on-chip design. With current state-of-the-art technology perlormance of the pipeline and simplifies the hardware. The

either some vital component of the processor (such as memory simplified pipeline eases the handling of both interrupts and page

management) must be off-chip, or the size of the chip will make faults.

both its performance and yields unacceptably low. Choosing what Although MIPS is a pipelined processor it does not have

functions are migrated off-chip must be done carefully so that the hardware pipeline interlocks. This approach is often seen in low

performance effects of the partitioning are minimized. In some and medium performance microengines. MIPS five stage pipeline
cases, through careful design, the effects may be eliminated at contains three active instructions at any time: either the odd or

some extra cost for high speed off-chip functions. even pipestages are active. The major pipestages and their tasks

Speed/complexity/area tradeoffs are perhaps the most important are shown in Table 1,

and difficult phenomena to deal with. Additional on-chip
functionality requires more area, which also slows down the Table 1: Major pipestagesand their functions
performance of every other function. Ihis occurs for two equally Stane Nnemonic Task

instruction Fetch IF Send out the P.
important reasons: additional control and decoding logic in- increment it

crea,;es the length of the critical path (by increasing the number of Instruction Decode It Decode 'Instruction

actixe elements in the path) and each additional function
increases the length of internal wire delays. In the processor's data Operand Decode s0 Compute effect oyeeddres, Snd send to

path these wire delays can be substantial, since thy accumulate memory iI load or

both from bus delays, which occur when the data path is stor. us* ALU

lengthed, and control delays, which occur when the decoding and Operand Store/ 03/ Store: write operand/

control is expanded or when the data path is widened, In the Execution EX fiecution: use ALU

MIPS architecture we have attempted to control these delays; Operand Fetch OF Load: read operand

however, they remain a dominant factor in determining the speed

of the processor. Interlocks that are required because of dependencies brought out

by pipelning are not provided by the hardware. Instead, these
The mic roa rchitectu re interlocks must be statically provided where they are needed by a

pipeline reorganizer This has two benefits:

s1. A more regular and faster hardware implementation is

The fastest execution of a task on a microcngine would be one in possible since it does not have th e usual complexity

which all resources of the microengine were used at a 100% duty associated with a pipelined machine. Hardware Interlocks

cycle performing a nonrcdundant and algorithmically efficient cause small delays for all instructions, regardless of their

encoding of the task, The MIPS microengine attempts to achieve relationship on other instructions. Also, interlock hardware

this goal. The user instruction set is an encoding of the tends to be very complex and nonregular 3.4. The lack of

microengine that makes a maximum amount of the microengine such hardware is especially important for VLSI implemen-

available. This goal motivated many of the design decisions tations. Where regularity and simplicity is importantL

found in the architecture. 2. Rearranging operations at compile time is better than

MIPS is a load/store architecture. i.e. data may be operated on delaying them at run time. With a good pipeline

only when it is in a register and only load/store instructions access reorganizer, most cases where interlocks are avoidable

memory. If data operands are used repeatedly in a basic block of should be found and taken advantage of, This results in

code, having them in registers will prevent redundant load/stores performance better than a comparable machine with

and redundant addressing calculations; this allows higher hardware interlocks, since usage of rusources will not be

throughput since more operations directly related to the delayed. In cases where this is not detected or Is not

computation can be performed. The only addressing modes possible, no-ops must be inserted into the code. This does

supported are immediate, based with offset, indexed, or base not slow down execution compared to a similar machine

shifted. "lbese addressing modes may require fields from the with hardware hiterlocks, but does increase code size. The

instruction itself, getoeral registers, and one ALU or shiftcr shifting of work to a reorganizer would be a disadvantage if

operation. Another AI.U operation available in tie fourth stage it took excessive amounts of computation. It appears this is

of every instruction can be used for a (possibly unrelated) not a problem for our first reorganizer.

computation. Another major benefit derived from the load/store In the MIiPS pipeline resource usage is permanently allocated to

Is



Various pipe sLaget Rather thalt having pipeline stagei compete tions was atlempted In an irregular Ikhion.
for te wse of resources througA q4vcuci or priority schcmes, the MIPS has one instruction size, and all intruco.4ons execute In the
avchine's resourcei ame dedictted to speciPc stages so that they mine amount or time (one data memory cycle). Thbis choke
go 1001 utilized. In ligure |. the allocation of resources to simplifies the construction of code generators for the architecture

.hftdividual pipe stages is ihown. When concurrendy executin$ (by eliminating many nonobvious code sequences for differnit
,pipe stages arc overlayed. ail available resources can be used. Ninctions) and makes the construction of a synchronous regular

fiaure I: Resource Allocation by PipestC e pipeline muoh easicr, Additionally, the fact'that each macroin-
struction is a single microinstruction of fixed length and execution
time means that a minimum amount of Internal state is needed in

the pmosor. The absence or this Internal state lends to a faster
processor and minimizes the dlifculty of supporting interrupts
and pase faults,

Resource Allocation by Pipestage
Floure I Resources of the micfoengine

1 2 . A4 It A 7 a 2 10 The major finctional components of the microcngine include:
r ID 00 ?R'OF.L , 0 ALU resources: A high speed, 32-bit carry lookahcad ALU

I0 • OF with hardware nipport for multiply and divide: and a barrel
OD y OF, shlfter with byte insert and cx-tact capab;litics. Only one of

10 OD the ALU resources is usable at a time. "hus within the class
IF I of ALU resources, runctional units can not be flily used

even when the class itself is used 100%.

m LI oru mey * Internal bus resources: Two 32-bit bidirectional busses.

F ~ iOF~ each connecting almost all functional components.
00i EX rC * On chip storage: Sixteen 32-bit general purpose registem

Wt10 t Memory resources: Two memory interfaces, one for
L LInstmctions and one for data Each of the parts of the

'A forweby0and EX meory resource can be 100Y1 utilized (subject to packing

and instruction space usage) because either one store or

* To achieve 100% utiliiation primitive operations in the micro- load foam data memory.and one instruction fetch can occur

engine (e.g.. load/store, AU operations) must be completely simultaneously.

packed into macroinstructions. This is not pouaible fur three * A multistage PC unit: An incrementable current PC with
reasons: storage of one branch target as well as four previous PC

1. Dependencies mn prevent full usage of the microengine. values. These are required by the pipelining of-instructions
for example when a sequence of rcgistcr loads must be done and interupt and exception handling.
before an ALU operation or when no-ops must be inserted.

2.An encoding that presen'ed all the parallelism (i~e.. the The Instruction set
microcontrol word itscllO would be too large. I1bi is notserioustrolwor sitnce wanyoul f be too ssc ibls misro- All MIPS instructions are 32-bits. The user instruction set Is a
nsrious problem since many of the possible mico- compiler-based encoding of the micronmchine. Static and

dynamic instruction set efficiency, as detenrined by a code

3.The encoding or the naicroengine prescnted In the instruc- generator, is used to decide what micromachine feature. to
lion Sot sacrifices sonic functional s•ecification for immed- encode into macroinstructions in the architctdure. Multiple
late data. In the worst case., space in dte instruction word simple (and pmsibly unrelated) instruction pieces are packed
used for loading large imnediate values takes up the --pace together into an instruction word. Thb bahic instruction piceie

normally used for a ba1se rgister. displccraentt, and ALU are:
operation specificltion. In this case the Ue memory interface 1. ALU picesa - these instructions are all register/rgeiter (Q

and AIU can not be tuscd duing the pipe stage for which and 3 operand roial'iis). They all use les than 1/2 of an
they are dedicated. instruction word. Includcd in this category are byte

Nevertheless. it results on mlerungine utilization am Inseri/extract. two b-, I'fltths niultiiplv -tep, anti ie11 bit
eticnuriging. Many instnrclions fully wtili/e the nuijor resources nouwrcoring divide ,eep. m. well wi stainda:rdi AI.U anld

of die machine. Other instnictions.such& oat id imnictfitle which locicil operations.
use few of the r |ouice•s of the nticliine. would mndate Creatly I IAd/.q' i)l.ces - thes instructions load and More

incrva.-ed control co'inpleity ifowrlalp %iih stfrounding instruc-
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ictro'y opciands. They use betvween 16 and 32 bits of an The solution we have chosen to this problem is to separate the
instruction word. When a load instruction is less than 32 data mid instruction memory systems. Separation of program and
bits, it may be packaged with an AI,) ioistruction, which is data is a regular practice on many machines: in the MIPS systemr
executed during the Exccutiun stage of the pipeline, it allows us to significantly Increse prirrormance. Another benefit

3. Control flow pieces - these include direct jumps and of the separation is that it allows the use of a cache only for

compare instructions with relative jumps. MIPS does not instructions. Because the instruction memory can be treated as

have condition codes, Uut includes a rich collection of set read-only memory (except when a program is being loaded), the

conditionally and compire and jump instructions. The set cache control is simple. The use of an instruction cache 0llows

conditional instructions provide a powerful implermentation increased performance by prodding more time luring tho critical

for conditional expressions. They set a register to all l's or instruction decode pipe stage.

0's based on one .f 16 possible comparisons done during
the operand decode stage, During the Fxecutlon stage an Faults and Interrupts

AI.J operation Is available for logical operations with other The MIPS architecture will support page faults. cxtcrnatUly
booleans. Tha compare and jump instructions are direct generated interrupts, and internally generatrd traps (arithmetic
encodings of the micromachine: the operand de.'ode stage overflow). IThe necessary hardware to handle sudh things In a
computes the address of the branch target and the pipelined architecture usually large and complex3 .4. At:iher-
Exiution cycle does the comparison. All branch instruc- more, this is an area where the lack of sufficient hardware support
dions have a delay in their eflL.ct of one instructioni Le., the makes the construction of systems software impossible. However.
next sequential instruction is always executed. because the MIPS instruction set is not interpreted by a

4. Other instructions - include procedure and interrupt microengine (with its own state), hardware support for page faults
linkage. The procedre linkage instructions also fit easily and interrupts is significantly simplified.
into the micromachine format of effective address caciu- To handle interrupts and page faults correctly, two important
lation and register-register computation instructions, properties are required. First, the architectur,; must ensure correct

MIPS is a word-addressed machine. This provides several major shutdown of the pipe, without executing any faulted instructions
perfcrmance advantages over a byte addressed architecture. First, (such as the instruction which page faulted). Most present
the use of word adiressing simplifies the memory interface since microprocessors can not perforni this function correctly (e.g.
extraction and insertion hardware is not needed. This is Motorola 68000, Zilog Z8000, and the Intel 8086). Sccond, the
particularly important, since instnrction and data fe'tch/store are processor must be able to correctly restore the pipe and continue
in a critical path. Second, when byte data (characters) can be execution a5 if the interrupt or fault had not occurred.
handled in word blocks, the computation is much more efficient. "hese problems are significantly eased in MIPS because of the

S Last, the effectiveness of short offsets from base register is location of writes within :he pipe stages. In MIPS all instructio..
multiplied by a factor of four. which can page fault do not write to any storage, either registers

MIPS does not directly suppcort floating point arithmetic. For or memory, before the fault is detected. The occurrence ora page
applications where such computations are infrequent, floating fault need only turn off writes generated by ýhis and any
point operations implemented with integer operations and field instructions following it which are already in the pipe. These
insertion/extraction sequences should be sufficient For more following instructions also have not written to any storage before
intensive applications a numeric co-processor similar to Lhe Intel the fault occurs, The instruction preceding the faulting
8087 would be appropriate, instruction is guaranteed to be executable or to fault hik r

restartable manner even after the instruction following it faults.
Systems Issues The pipeline is drained and control is transferred to a general

purpose exception handle!r. To correctly restart execution three
The key systems issues are the memory system, and internal traps instructions need to be reexecuted. A multistage PC tracks these
and external interrupt support. instructions and aids in correctly executing thcm.

The memory system Software Issues

The use of memory mapping hardware (off chip in the current
design) is needed to support virtual memory. Modern micro- compine n rs the ip ut to ap e

processors (Motorola 68000) are already faced with the problem conganiers a sequne of sime MIP instrt ions
thatthesum f te meoryaccss tme nd te mmorymapingreorgan:izer is a sequenrc.- of simple MIPS instructions or

that the sum of the memory access time and the memory mapping instruction pieces generated without taking thc pipeline interlocks
timte is too long to allow the processor to nani at Iill spced.his and instruction packing features into account Ibis relieves the
problem is compounded in MIPS; the effect of pipelining is that a compiler from the task of dealing with the restrictions that are
single instruction/data mcmorý must provide access at
approximately twice the normal rate (for 64k RAMS). imposed by the pipeline constraints on lcgat codc xquences. The

20



srorvnlxcr reordcrs tie instruction~s to mike roaximunj ume or the *11oi optirmlzAtion Of delayed fribmnte is tho CjV~rnI*.ri
pipclno while eatturcin; die pipeline infcrlocks in the codc. It also conterpArt of code r'"rganit~ation. Our algorithmi for bmi:td
picks 4he instruction pieces to m.-ximime use nor eaich Instruction delay optlmiration examitils the target% of the branch in 4A

*~d Lastly, the pip..Iinc reorg.-mijir handles the crfe:,' or attempt to obtain useful instructions to execute. dyring~.09-l1Y
tgsr4 delays. 'Ibis s6flware is an important part of the MIPS Urn.. The branch delay algcrifthi can obtain s*A&coand Lnmg

* arcuhiltccturc. It is responsiblc for making rho low-level Improvements in die range or JO-w% (or the 'MUIS braacgg
W ut~vok-mr~itecture into a usable sod comprehensible inistruction ~ suto&

Sv Since the exact details at pipeline inte:rlocks and branch
I delays may change between ýmplcmentatlons. the architecture is .. Present itatus and conclu~itins

&"Ihly defined by tie input to the pipeline reorganizer. henieMPprcs ham idmtndadiivtlrr#Sinc entir MIPSucon prccuto has aen samd time antd morstte or
lincm llIsructions geea edxucote ienertore %%ill ntime, full MoPSt a of six test chips Wit cover all the data path and com-nri
InsttuctlonS sentrathed byiciode pcigeneato ilno be vr ffeull inS Itnctions on the chip. Four test chips haive beco~ sent out Pr

iaism~t'~l set th lntn~ton ackng cn b vcy efectivcin brivtion as of Aupgus: 1932: we e-xpcct send thi rerniaiider to
reducing execution time, In fully packed instructions, c.g. a ionce fabrication during August 1982.
onibined. with an ALIJ instructi.,n, all the tixaj%, processor

resources (both rncmory inteffaces the alu. busses and control In the softwarc area, code generators havt" been written for
logi) are used 1M0 of the time. C and Pascal These code gencrators produces.implc instruct.rnl.

The asi optmiztiontecniqus ioplid t thecod seqencsrwlying, on a pipeline reorganizer. A compl'ete version of ::%e
The asi apzmi~tiontecniqes eplid tothecodeseqcn~pipeline ftorjganizer is running. An instruction level simulat.x is

amL reordeir instruction sequences to remove pipeline interlocks, being used to obtain performance estimate&.
r I acktogtherinsrucion ieos ito asinle IPSFigure 2 shows the floorplan of the chip. The dirnensiuns or -he

2.pc oehrinstructio n icsit asreMP chip ame approximately 6.9 by 7.2 mm wi~h a minimum fcz:.re
instrutior sze of 4 it (Le. X~ = 2 IA). The chip area is heavily dedicated to :.'e

3. remove the etfc'cts of delayed branches datpth as opposed to control stricture, but not as radiatdh- as
In some cases it may be necessary to insert lo,-ops to preveit. in RISC implementation. Early estimates or performance seew. to
Illegal pipeline interactions or to accomodate delayed branches. indicate that wec should achieve approxima'tely 2 MIPS (using -.:to
Also, pieces or instructions may be left blank whenever no piece Puzzle program7 as a benchmark) compared to othecr architectcr.-
ft available to pack with the iistructi n, executing compiler generated code. We exp ect to have m:re
The reorganization problem is discussed in detail in another accurate and complcte benchmarks available in the near future.
papers; the problem is shown to be NP-complete and a set of
heuristic solutions is proposed. The reorganization algorithm is Figure 2: MIPS floorplan
essentially an instruction scheduling algorithm. The biisic algo- - .-WONU

rithw is eI~~ d~,S~~

L. Read in die program in issembly language and create a dag 3

iniaigprecedence scheduling relationships aniong the 0
Intructions. : ________A_

2. Determine which groups of instructions can be scheduled * "

tar exectiton next and eliminate die othieui I

3. Heuristically choose an instruction to shedule from the aP
executable instructions. Attempt to choose an instruction ftA a 0,

tht can be packed with the list instruction executed and
that will allow the rest of the code to be scliedu lcd with a
minimum numiber of no-op& LJ The reorganizationi problem is nade difficult but the potential _________

'presence of o~L'rilflppmn rc'rotirce twilitation in pirallel code ,. M

3tream. 'Ibisq o%erlhrp nit-st he dctected before schiediling of
either streanm oc-curs: onice it is det~tcd. a deadloack state %%here -~,,

ncitir eam can Iechowtutlukd for executit~on is avoidable.,bs-
reorganization technique (W'thokit the instruction packing) can
obtain perfomrnimice imnlwovcitient-i of 5- 1017 over code thart miust *lbe following chart compares the MINS proce'~or to VIVf aoit frO c~ompletion of ai pieviitW~y dependlent instruction. IeNtloltorola 68WOh runuitig the l'ui~lc- KAltua*iak %filltsc iin C %-Ir
Uxo of ianstnactivii parkinig increa~se the~ relative crfectivetitss of Ito oiltimimflton or ici.%iecr a*locatioa. 113o Plortibte C Co- ;1)11.
this reorrt.oiai tion. (with diflwcutr larget macheline det riptluvw) getterited kvS
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both proccssors. Thec MIPS numbers are a close approximation of
our expecetd performance.

iHotoroiluwq9 Hips
Traosistog' Count 85,000 2
Clock speed a Htil 8 I4Ha?

10 ata path whith 
16 bit% 32 bits

2

static instruction count 1300 647, static instruction flytes 5380 2588
Execution Time C(sec) 28.5 8.6
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ABSTRACT

ICTEST is a superset of the C programming language that spe-
cializes in test programs for integrated circuits. It is used by the
designer to specify the stimulus to a circuit and the expected
response from the circuit. ICTEST provides a common interface to
a variety of testing and simulation environments, and frees the
designer from translating test algorithms into bit vectors. This
document aims to provide you, the designer in the street, with
enough information to simulate and test chips. Since ICrEST is
based on C, the prospective user must have a rudimentary
knowledge of that language as well. The first section is provided
for those with no experience programming in C. Experienced C
users can start with section 1I.
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1. Minimal C
C shares many common characteristics with the Algol-like and Pascal-like

languags. Tlhe uie'r familiar with Pascal should pick up the elements of C
quickly. Readers familiar only with FORTRAN are to be pitied for their lack of
worldliness, but their main difficulty should be in absorbing the more robust
control structures olfered by C. However, a few caveats are in order for all neo-
phytos:

* Case is always significant - Foo is not equivalent to foo, Reserved
words In the language are expected to be in lower case,

6 There are no procedures in C, only functions. Any procedure may
return a value, However, it need not return a value, and the value
returned by a function can be ignored.

6 There is no general notion of scope, as there is in Pascal. The only
scopes are global and within a function. Functions cannot be defined
within functions.

1. Aslmple program
C programs are simply collections of functions. The mairi program body is

defined by a function called main. The function definition consists of two parts.
FMrst, there is the function name, followed by the list of parameters in
parentheses (the parentheses must be present even if there are no arguments),
and a declaration of the types of the parameters. Then comes the function
block, which declares the local variables and the actions to be taken by the
funcLion, The functions may be declared in. any order in the program file, but it
is wise to keep them in some logical order.

Consider this program:

/0 his is a comment; comrrents do not nest /
main 0

int I, answer;

for (i = 1; 0 ! 11; 1 = 1+1) /0 compute n! for n=1,....10 /
I/ Here begins a compound statement 0/

answer = factorial (i);
wastetine O;
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int /* factorial returns an integer value '/
factorial (argi)

int argl; /9 its argument is an integer */

int I, n; /* vriables local to the function 0/

/0' Cbmpute (argl)! by iteration; 0! = ! /
n=1;
/# for (initial Value; continuation condition; increment) 9/

for (i =1 i <L argl; i = i+0)

II In = n~i;

return (n); /9 Return a the result 9/

wastetime () /I has no parameters, returns nothing P/

int i, counter;
/* waste time by counting from I to 1000 9/

for (i = 1; i <•z: 1000; i = i+1);

The astute reader will note that this program has been rendered unin-
teresting by the lack of input or output. This situation will be remedied soon;
meanwhile, consider several other characteristics of the program. First, integer
variables, 32 bits long, are declared by the int statement. This is the type most
useful for ICrEST programs.

Second, the value to be returned by a function is indicated by the state-
ment

return (value);

where value can be any expression. Also, since factorial returns a value, it must
have a function type. If the function type is not specified, it is assumed to be
int. (The function type specification precedes the function name.) Wasteltime,
on the other hand, does not need to return a value, so it does not use the return
statement, and its call looks much like a procedure call in other languages.

Third, compound statements are made using ý and [. Although all simple
statements must be terminated by a semicolon, compound statements need no
such punctuation.

Fourth, although it is not obvious from this example, all function arguments
in C are value parameters. Their value for the caller cannot be changed by the
callee. C has a mechanism for allowing reference parameters that can be
changed by the callee, but it is error-prone and rather baroque. For the pur-
poses or IcrTST, returning a single value with return should be sufficient.

Finally, there is the for loop. This is one of several control statements avail-
able in C. Control structures are the next topic of discussion.

2. Logical expressions and control structures
There are three control structures of interest: the for-loop, the while-loop,

and the if-then-else statement. Each evaluates an expression, and depending on
its value, may execute a statement (which can also be a compound statement).

SExpressions can be used to compare variables and constants, much as you
would expect. The comparison and logical operators are:
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0 < less than
> greater than
<= less than or equal to
>= greater than or equal to
== equal to
!= not equal to

&& logical and
11 logical or
I logical not

Note that the equality operator is ==. This is often confused with =, the assign-
ment operator. However, C allows assignment operations within comparison
expressions. Therefore, if you use = when you meant ==, the C compiler will
probably not complain. This mistake is a common source of infinite loops for
beginning C programmers.

The for loop was demonstrated in the sample program. The general form is

for (initialization; while-condition; increment)
action;

Before the loop starts, the initialization statement is executed. Then the condi-
tion is tested, and if it is true the action is performed. After the action the
increment statement is executed, and the program loops back to retest the con-
dition. Unlike FORTRAN, and like Pascal, a for loop can execute zero times if the
loop variable is initialized to a value that does not satisfy the condition

The for loop is best understood as a special case of the while loop. C
expands the for loop into this while statement:

initialization;
while (condition)

action;
increment;

This has the obvious interpretation: while the condition is true, the statement
(or compound statement) following is executed.

The final control statement is the if-then statement. It can be written with
or without an else clause:

if (condition)
statement;

if (condition)
statement;

else
statement;

This statement again has the obvious interpretation. However, the if-then-else
syntax differs from Pascal: if the if action is a single statement, there must be a
semicolon bctween it and the else clause. This is because the semicolon in C is a
statement terminator, not a statement separator as in Pascal.

S
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* 3. Arrays
C also allows arrays of one or more dimensions. The declaration for a one-

dimensional array of eight integers and a 4 by 5, two-dimensional array of
integers is

in a[8], b4[]

The lower bound of an array is fixed at zero, so the elements of a are numbered
0,1,....7. There is no bounds checking on array indices, so be sure the index is
always in the proper range. Also, due to the parameter passing mechanism of C,
arrays are an exception to the call-by-value rule. Array parameters can be
modified by the callee (actually because C passes a pointer to the first element
of the array). A function cannot normally return an array unless it is passed in
to it. As a rule, stick to one-dimensional arrays where possible; there are some
tricky intricacies involving higher-dimensional ones.

4. Macro preprocessing
C programs are passed through a macro preprocessor before they are com-

piled. The preprocessor performs a number' of useful functions: for instance,
since C does not have constants in the language definition, the preprocessor can
be used to substitute constant values for their names. The three most used
features of the preprocessor are define, include, and ifdef/endif.

Define allows the definition of a pseudonym for a string. For example,

#define GOO 23

* will replace, all instances of GOO with the string 23 in all lines after the definition.
The # marks the line as a preprocessor command, and must be in the first
column. Case is significant in the preprocessor, as it is in C; it is traditional for
program constants to be entirely capitalized. Constant definition is the pre-
valent use of define, but almost any string replacement can be made.

#define begin
#define end

could be used to make the Pascal programmer more at home, but don't use it
why exacerbate your typing chores.

Include performs file substitution, The command:

#include "sLandard.h"

will cause the preprocessor to insert the text of the file standard.h before the
next line in the source. Included files may contain include statements, but the
recursion cannot continue indefinitely.

InclUde is particularly handy for information that is common between
several program files. Only one copy of the data is necessary, and when it is
updated all programs that point to it by include will receive the update. The
extension ".h" is conventional for such header files. They should contain only
definitions, data structures, and type declarations, not. C code - separate com-
pilation and loading cxists for the latter purpose, unlike in Pascal.

lfd&f allows conditional compilation. If-then and if-then-else conditionals
are possible. The three commands used are:
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#ifdet identifier

#endif

Ifdef checks whether the identifler has been defined in a previous define macro.
If so, the source lines between else (if present) and endif are ignored. If the
identifier has not been defined source lines between the ifdef and else or endif,
whichever comes first, are ignored. The usual method of using ifdef is to define
the different conditions with names and head the source file with a defIne macro
that sets the desired condition name to have a nonzero value.

5. Input and output
Finally, we come to I/0. I/0 procedures in C are implemented as standard

procedures and macro definitions. A program using the 1/O package must
include the preprocessor command

#include <stdio.h>

before any I/O calls are made. (Pointy brackets enclosing a Mle name indicates
the file is in a system library known to the preprocessor.) This call can always be
included without cost.

The simplest I/O functions to use are printf for output and scanf for input.
The form for both functions is:

printf (command-string, argument, argument, ... );
scanf (command-string, argument, argument, ... );

The arguments are the values to be printed or input. Arguments to printf are
value parameters, and therefore may be arbitrary expressions. The command
string is much like a format statement in FORTRAN: it is a literal string with
embedded commands showing the position and type of variables to be printed.
Integers are the main item of interest for ICTEST, which are described by %d. An
example command string for printf is:

"The values range from %d to %d\n"

When the output is performed, the first %d is replaced by the value of the first
argument in the printf call and the second %d is replaced by the value of the
second argument. The \n indicates a magic character, as in the editor; in this
case it is a newline. Prinlf does not output newlines unless requested to by the
\n. The other useful magic character is \t, a tab. The rrintf call using this
command string might be

printt ("The values range from %d to %d\n", variablel*6, i);

P.intf performs no checking to insure that the argument type agrecs with the
type specified in the command string, nor does it check to see if the number of
arguments equals the number of values required by the command string.
Beware.

Scanf uses the command string to indicate the format of the input
requested. Input of two free-format integers can be accomplished by

scanf ("%d %d". &variablcl. &i);

The expression "&variablel" means "address of variablel"; passing such a
poin•er to variablel allows scanf to set the value of variablel, circumventing C's
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usual call-by-value semantics,

6. Bit hacking
Since ICT.Sr programs exercise chips that understand only bit streams, it is

sometimes useful to manipulate integers as bit vectors. There are several C
operators defined on integers:

& bitwise and
I bitwise or

bitwise exclusive or
<< left shift
>> right shift
#W one's complement

Avoid the temptation to use these operators in a manner dependent on the
machine word length. Also, the effect on the sign bit of right shift is undefined in
the language; on the VAX, it extends the sign bit.

7. Lint
Lint is a command that examines C source programs to detect a number of

bugs and obscurities. It enforces the type rules of C more strictly than the C
compiler. Lint accepts multiple input files and library specifications, and
checks them for consistency. Suppose there are two C source files, file l.c and
flle2.c, which are ordinarily compiled and loaded together. Then the command

lint file 1.c fl e2.c

produces messages describing inconsistencies and inefficiencies in the pro-
grams. The command.

lint -p filel.c filc2.c

will produce, in addition to the above messages, additional messages about vari-
ous error-prone or wasteful constructions that, strictly speaking, are not bugs.

11. ICTESI
The purpose of ICTEST is to provide an algorithmic environment for testing

integrated circuits and to free the designer from dealing directly with bit vec-
tors. 'The designer specifies the stimulus to a circuit and its expected response.
He then compiles the ICT,-ST test description and uses it to exercise either a
simulation of his design or an actual part.

An ICTI-SbT program has 2 major parts: declarations of lMports, and the test
procedures themselves. An lOport describes a logical connection to the circuit
to be tested, including the physical pins or simulator nodes and the timing and
data formatting involved. The test procedures manipulate the lOport driving
and sensing values, and IMTET converts these commands into the sequence of
0's and l's necessary for the actual test.

IGl'Err is tailored for testing two-phase, synchronous designs. It generates
the clocking automatically, and it recognizes the two-phase timing types, e.g.,
valid phil. This tutorial will concentrate on such testing, although Ic',sr can
cope with unclocked or asynchronous designs as well.

Keywords In I=0i.:* are shown in boldface. "Pin' is used generically to refer
either to a pin on an IC or a node in a simulation.
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SI1. Declaring 10ports
ITS17'r exercises the circuit through lOports, For testing physical chips,

these refer to pins or groups of pins; for simulating, they can refer to any elec-
trical node, The lOport declaration defines the port name, the data format it
expects, and the timing required to drive or read it. The general form of this
statement is:

serial Isb length
stabsb Iinrut [aetivelol I sb 'l i h- .th}

0 am~ e lo Ieg ls ength byuAdth 11ta dlfh 1hIOU L I I nil I 1 msbJ qval phi
{ p parallel h qual

JOnarme is the port name, width is the number of pins it has, and Length indi-
cates the number of consecutive clock cycles required to transfer a value to or
from the port. Serial implies a width of one; parallel implies a length of one.
Finally, the clocking phrase declares the timing type of the port.

Here are two sample lOport declarations:

input Datair acUvelo parallel 5 stable phil;
output Dataout aerial lob 24 stable phi2;

Conventionally, the first letter of a lOport name is captlaized to make it easy to
distinguish from a C variable. Datain is a 5-bit input port, accepting values from
-16 to +15, whose values are stable io. It uses negative logic. Dataout is a serial
port producing a 1-bit-wide, 24-bit-long bit stream, least significant bit first, with
values stable •o. When Datcaout is read, the ICTI'T will automatically count out
the 24 clock cycles necessary to read the port and convert the result into an
integer.

If a group of pins operates as a three-state port, the group must be defined
with two lOport declarations: one to declare its input characteristics and one to
declare its output characteristics, Both ports are thpn bonded to the same pins
(see below).

A qualified clock lOport (qual timing type) produces a single clock pulse
when requested to output a 1. Normal input ports latch their values; qualified
clock ports do not.

A segmented ]Oport is simply a serial port more than I bit wide. For exam-
ple,

input Segsin segs nsb 4 by 5 valid phil;

declares a port 5 pins wide and 4 time periods long, for a total of 20 bits of data,
Msb indicates that the most significant segment is presented first. Data is valid
on ýp

2. Declaring a clock
Normally, you will declare a clock lOport:

clock lOname [ activelo
nil l

dlock Clock;
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Claok (not the same as clock) is the port name, If aock has 2 pins associated
with it (see below), lCTwsF generates a 2-phase, non-overlapping clock signal to
drive it. A 1-pin clock port is assumed to define V, only.

3. lOports and physical reality

The bond statement associates pins with lOports. It must precede the first
lOport declaration. It is the one part of the program inherently tied to the tar-
get system: for physical chip testing it relates pin numbers and lOports, while
for simulators it relates node numbers to lOports.

A bond statement for a tester target contains the number of pins on the
chip package, the number of pins in the tester socket, and a list of lOport names
and their associated pins. The bonding declaration for the lOport in the previous
section might be:

bond pkg 40 socket 40

Datain = 3-5,12-11;
Dataout = 2;
Clock = 8,9;
Vdd = 1;
Gnd = 3;

The pkg and socket information must be present for tester targets, and absent
for simulator targets. Datain consists of the 5 pins 3, 4, 5, 12, and 11, where 3 is
the most significant (sign) and 11 the least significant bit; Dataout consists of

* the single pin 2. Since cVock has 2 pins, IcTlST will generate a 2-phase clock.
Vdd and nrid are the pro-defined power and ground input ports. They must

be bonded in the last two clauses in the bond statement. Either of these ports
may contain any number of pins. No lOport declarations are required for these
ports.

Pins may be bonded to more than 1 lOport, necessary for 3-state pins, and
handy when one port is a subset of another. For example:

tri in, tri-out = 10-18;
parity = 36;
fuIlldata = 11-17, parity;

The bond statement for a simulator target contains a list of lOport names
and their associated nodes. Nodes may be specified as node numbers or as node
names. If node names are specified on the right side of a bonding clause, these
names must appear in your simulator symbol file, i.e., the .sYm file. Size infor-
mat ion may not follow the word bond.

As for tester targets, the Vdd and Gnd ports must be bonded in the last two
clauses of the bond statement. The simulator will then drive the power and
ground nodes using information contained in the ..,Wnm and circuit description
(.S.im) files.

Since it is desirable to use the same program for both simulation and test-
ing of a circuit, and since the bondstatement must be different for these two
types of targets, clever programmers will put their bond statements in separate
fies from the rest of the test program (e.g., in "bond.sim" and "bondchip").

* The symbol SIM is automatically defined for simulator targets; CiIP, for tester
targets, so these fIles may be conditionally included in the ICMI'T program:
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girde SIM
#Include "bond.alm"#elso
#include "bond.chip"
#emdif

4. Test steps
A test step is an C1TEST operation on a ]Oport. There are 3 basic types of

test steps: driving an l0port to a value (input to the circuit), sensing and com-
paring the value of a port to an expected value (output to the circuit), and sens-
ing and storing the value from an output port (also output to the circuit). As will
be discussed later, there is also an enforced "NOP", requiring no activity on a
port for a specified number of clock cycles (the pad Lest step).

All test steps have the format:

JOport(s) operator value(s),

1.iLie(,) may be absolute numbers, variable names, function calls, or C expres-
sions. Expressions must be enclosed within parentheses, Test steps are nor-
mally executed one after another in the order that they appear in tUe program
on consecutive clock cycles.

4.1. Drive test step
Driving a port to a value is similar to variable assignment:

lOport(s) = value(s);

The lOports are driven to the value(s). If more than one value is present, the
values (from left to right) are driven to the port in successive clock cycles. If
more than one lOport is presenL, each is driven to the values. Both lists are
comma-separated.

A port can be driven to any value that will fit into its word length. Data is
converted from 2's complement integers into bit vectors and formatted for the
port. Recall that if the port is declared as activelo, the bits are complemented
before being sent to the port. For example,

Datain = 7;

drives the port Detain t o the value 7, and:

Datain = 7, 8, 9;

drives it. to 7, then 8, then 9 on successive clock cycles.

4.2. Sense test step
Sensing the value of a port is equally simple. The format for this Lest step

is:

lOport(s) =? value(s);

The output(s) of the lOport(s) are compared to the data value(s) on the right
side, analogously to the corresponding drive step. For example,

Dataout =? corvolve(i);

will cause Dalaout to be read and compared to the value returned by
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convolveh(), If the values do not match, lCTI'WT produces a diagnostic indicating
the value expected and the value actually road. If the compare is successful, no
message is output.

4.3. Storo test stop
The test step:

1Oport => storeloc;

senses and stores the value, at an output port. Only a single port name and a
single store location (variable name) may be specified.

Storing occurs at the end or a test or subtest, not immediately! Be sure to
read the sections on a sample test program and on literals (comlng up) to
understand when you may usefully use the stored value. 67toreloc may be a
scalar variable or a one-dimensional array element. The variable or array muut
have been previously declared with a result declaration:

-easult storeloc;

For example, a scalar and a 10-entry array could be declared as;

result. busvaluc;
result bus-values[ 10];

and used in a store test step:

BusA => bus values[3];

Result locations are aut.omatically defined to be 32-bit two's complement
integers. Values sensed at lower-precision ports are sign-extended to 32 bits.

The test steps above look very mucri like C assignment and expression
evaluation statements. They are not. lOports are not variables and cannot be
passed to functions as arguments or used inside expressions.

b. A sample test program

These statements are sufficient to write a test program for a simple chip.
Imagine a chip that takes as input a 16-bit data value, and outputs the square of
the data on the next clock cycle (it uses a good algorithm). An appropriate bond
statement is:

bond pkg 40 socket 40 /* only good for a tester 0/

Datain = 6-10,12,14,16; /* input z /
Squarcout = 25,2t3-34; / output X"* 0/
Clock = 4,6;
Vddin, Vddout = 10;
Gndin, Gndout = 21,1;
Vdd = 10;
Gnd = 21,1;

If you wish to sense if power and ground are properly connected (a good Ldea),
you must declare ports ( e.g., Vddin and Vddout here) and bond them to the
same pins as Vdd and Gnd. Vdd and Und are special ports and may not be
sensed or driven.
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The JOport declarations aro next, followed by the test.program:

input Vddin purtAllel 1;
output Vddout pirallel 1;
input Gr~din parallel 1;
Output Gndout parullel 1;
input Datain m•as lab 2 by 8 stable phil; /0 The data is read and written '/
output Squareout segs lab 2 by 0 stablo phi2; /0 as 2 bytes, lsbyte first 0/
dock Clock;

* test() is aluays the main program; <stdioh> is #included automatically

test()

tnt 1;

/0 power and ground connections are checked here 0/
Vddout = 0; Vdd = ? 1; Vddout = 1;
Gndout = 1; Gndout = ? 0; Gndout = 0;

/l frst test a subset of the possible input IV
for 0i = 1; i ! 65; i++)I

Datain i; /0 input the data to the port 0/
Squareout =? square(i); /* function square defined below I/

/0 now let the user speciy an assortment of numbers, ending with 0 '/
while ((i = getnumO) != 0)

S~Detain = i;

Squareout =? square(i);

int
getnum()

int i, nscanned;

printf ("number to test? ');
nscanned = scant ("Ud', &M); /0 read the number to square /
return (nscanned ==1 ? i : 0);

int
square(n)

int n;

return (n'n);

In this program, getnumr is called to get values to place into the test vector.
When the user types a zero (or anything else that scanf rejects), getnum returns
0, the whiLe loop exits, and the test completes. The test is then run, and any
miscompares from the sense test steps are displayed.

Note that IC•1E;1 automatically formats the data for the segmented input
and output ports and, since a clock is declared, makes the clock tick at the
right tirncs to communicate with the chip. Recall that the !kzlain and Squareout
1Oporis are segmented 16-bit ports, formatted as tvo 8-bit bytes in two consecu-
tive clock cycles.



The following activity will occur during the flrst 9 clock cycles of the
program's Arst loop. "-" indicates no activity for that port during that clock
phase; however, remember that input values persist until now values are
assigned.

Clock Cycle _V1 ._ [)at win Sgi'areout

0 1 0 - -
0 1 1 (lsb sea)

1 1 0 - _ -
0 1 1 (msb seQ)

_ _ 1 01_2 ! 0 - -._ _

0 1 -_ -

S. . ..... o . •I - 1 (lsb see)
4 1 ,0,

__.0, o 1 2 (lsb seop) I (msb seQ)
5 1 0 - -

0 1 2 (m sb seQ) . ..... . _-- __

6 1 0 -

7 1 0 _

. 0 1 o 1 - 4 (isb sea)
lB 1 o I - _ __ _ __ _

0 i1 - 44j(msb seg)

6. Compound test steps and concurrency
The statements presented so far have their limitations. For instance, there

is as yet no way to present simultaneously data and a ready signal to the circuit.
To control concurrency, you may group test steps. Such a compound test

step defines a testing context, an environment with such attributes as sequential
or concurrent test step execution and generation or non-generation of two-
phase clocking. When the testo function is entered, clocking is on if a clock is
declared, and execution is sequential. Thereafter, whenever a new compound
test step is entered, the context attributes are sLacked. Completing a com-
pound test step generates a return to the previous context environment.

There are 2 types of compound test steps, concurrent and sequential. In a
concurrent compound test step, all test steps are started simultaneously:

[[ test steps and other C statements ]]

In a sequential compound test step, the test steps are executed sequentially:

jj test steps and other C statements JI
Compound Lest steps may be nested, allowing very complex control and sensing.
For example, using 2 pairs or sequential brackets inside a pair. of concurrent
brackets results in 2 test sequences starting simultaneously and executing con-
currently.

0
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The default clocking is whatever prevails in the surrounding context, How-
ever, a leading clocking phrase can turn clocking on or off:

clocked 1/9clocked regardless... *]
unclocked [ /0 urnciocked regardless...

Any IC' ,nlr function, not only test(, may contain test steps. Such function
is called a test function. Unfortunately, when a test function is called, a new
context is not created, Therefore, if a test function is called from within a con-
current context, its test steps will be concurrent; if from a sequential context,
sequential. You probably do not intend such a result! The safest approach is to
include all test steps in any function within a compound test step; that way the
context is explicit.

Use return and goto statements carefully within testing contexts. In partic-
ular, control must flow out the end of the context if the previous context is to be
recovered. For example, never nest a return statement inside a compound test
step within a test function.

7. Time frames and offsets

A test vector describes actions on all pins for a series of time frames. In a
clocked context, a clock cycle covers 2 time frames, 1 per phase. In an
uncloeked context, the equivalent of 1 clock cycle is I time frame. If a serial,
length 4, input port were referenced in an unclocked context, the port would be
driven for 4 consecutive time frames. In a clocked context, the same port would
see new data every second time frame over 8 time frames (i.e., over 4 clock
cycles, with driving during the correct phase).

The execution of a test step in a compound test step can be relocated in
time by using an offset label. The offset label is a number or expression in
parentheses followed by a double colon, preceding a test step. The test step is
delayed by that amount from when it would have occurred were no offset label
present. For example, if you want to reset the circuit and then, after 79 clock
cycles have passed, check the output of the random number generator, you
could write:

Reset = 1;
Reset = 0;

79:: Raridom =? rangen(seed);

Reset goes high on the first clock cycle of the sequence and low on the second
clock cycle; then, after 79 idle cycles (the third through 81st), the result is
checked. Equivalently, you might write:

1 Resct 1; Reset = 0; I
81:: .. ndom ran-gen(seed);

o]

or perhaps:
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resetchipo;
81:: Random =? ran gen(seed);7]]

resetchipOI II
Reset = 1;
Reset = 0;

An expression can also be used as an offset label, as long as it is surrounded

by parentheses:

(RANSTART-1):: Random =? ran gen(seed);

The compare will be delayed RANSTART-1 cycles from when it would occur were
the offset label not present.

Currently, offsets may only occur on test steps and test function calls, not
on compound test steps. This restriction is easy to sidestep, however, by using
test functions like resetchip() above to contain a compound test step that should
be offseL. The offset can then be placed on the call to such a function.

In an unclocked context, the offset specifies the number of time frames to
delay the test action.

B. Iteration and pipelining

Prior to examining how pipelining is accomplished in iCTEST7, let's look at an
example that uses iteration but does not involve pipelining. (You should assume
that all lOports in the examples in this section have been declared as parallel
and that the enclosing context is clocked.) Suppose a new value and a control
flag are input to the circuit every 4 clock cycles. Suppose also that a value is
output every 4 clock cycles, delayed 3 cycles from the control flag, You might
write:

11
for (i = 0; i != 64; i = i + 1)

[ Control = 1,0; ]
Datain = i;

3:: Dataout =? outfunction(i);
IfI

The loop repeats 3 test steps in a concurrent context. The loop itself is within a
sequential context, which means that each iteration Df the loop executes in
sequence. (If this loop were in a concurrent context, all iterations or the loop
would execute simultaneously.) ThN. loop repeats every 4 clock cycles, since the
longest test step takes ,4 cycles (the output test step includes 3 cycles of delay
and I cycle for the out.put).

For each iteration of the loop, the Cbntrol port is set to 1 then 0 in the first
2 clock cycles. It remains unchanged from 0 for the third and fourth clock
cycles. The Datain port is set to i in the first clock cycle and remains
unchanged for the second through fourth clock cycles. The output is ignored on
the Jkataout port until the fourth clock cycle, when it is compared to



T'hu1 HvquvntL brackuts surrounding the test stop driving the Control port
a411 1W(It'ces dry, sinv,' ,all actions in a concurrent compound test slop are started
11lUliuAVously, It Lthi sequential brackets were not present, iCr1,:sr would pro-
duc• ani error announcing that the user attempted to assign two values to the
smano port ti the ,same time.

T'o force the loop to repeat in more than 4 clock cycles, you must use the
pad tost s•tp, Pad stepps are NOIUs, forcing no activity to occur on an lOport for
sonm number of clock cycles, For example:

Control = pad 6 Ucks;

will add ) cycles of padding to the last requested operation on the port Control.
(In an unclockod context b time frames of padding would be added,) Similarly,

Control = pad 2;

will pad the control by twice its declared length. Thus, if Control were a serial
port 12 bits long, no operation would be allowed within 24 clock cycles following
the latest activity on Control. The amount to pad may be any C expression.

This modified loop iterates every six clock cycles:

II
for (i = 0; i != 64; i = i +- 1)

! Control = 1,0; Control = pad 4 ticks; I
l)atain = i;

3:: Datnout =? outfunction(i);

Now no activity occurs on any of the ports in the fifth and sixth clock cycles of
each iteration.

Now suppose that the design is pipelined, so that new input data can be
accepted before the previous output is complete. To test such a part com-
pletely requires the use of a pack-ed context. The pack phrase can precede any
compound Lest step and, when present, specifies that all Lest steps within the
context are to be started as soon as possible without overlapping any Lest steps
(including pad Lest steps) from the previous iteration. Thus, for:

for (i = 0; i != 64; i = i + 1)[I
11 Control = 1,0;
Datain i;

a:: Dataout outfunction(i);]]

each iteration of the loop is 4 clock cycles long and begins 2 clock cycles prior
to compleLion of the previous iteration. In oLher words, the loop begins another
iteration every 2 clock cycles, and any 2 consecutive iterations of the loop are
overlapl)ed in time by 2 clock cycles. Note that no Lest steps are actually over-
lapped: no activity is specified for ConrLrol in the third and forth clock cycles of
each iteration; no activity is specified for IaLain. in the second to fourth clock
cycles; and no activity is specifled for Iataout in Lhe first three clock cycles.

0
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We can summarize the resulting activity for the first 8 clock cycles in a
table. "-" indicates no activity for that port during that clock cycle, Datain and
Cbntrol are assumed to be valid on 9,

Clock Cycle Control I tDzain . a. aott
0 1 0 -_ ,

_ _ __ 0 - ... .. .
2 1 1
3 0 " outfunction(0)
4 1 2 -

0 0 - outfu.nriio•n(1)
6 1 3 -
7 0 - outfunction 2

If the part accepts new data every 3 clock cycles rather than every 2, the
control stream may be padded to reduce the amount of pipelining (with pad or
just with a 0):

for (i = 0; i != 64; i = i+l)

Control = 1,0;
Control = pad I ticks;

Datain = i;
3:: Dataout =? outfunction(i);

A context is always unpacked unless a pack phrase appears.

9. ULterals
Literals are commands meant to be passed. directly to the simulator or tes-

ter target. The only messages currently of interest are for one of the simulators
(esim or ts-ivn):

IS message; Sý

A common example is a simulator initialization command such as:

is iu; SJ

Literals have the side effect of dividing a test into pieces: to synchronize the
literal-command with the testing commands, 1CTE'IEr must run the test specified
so far, then issue the literal command. The current test vector is sent to the
testing target, the test is run, the results are returned, and the error messages
(if any) are printed. Finally, the literal is processed, and a new test vector is
begun. This procedure is used regardless of whether the literal is intended for
the current target.

Trhis side effect is useful because Ilihsr can only handle a limited-length
test vector. 'the maximum length depends upon the particular target, and a
longer test will generate the error message "out of Lester memory" (or possibly
"allocation error'' or 'reallocation error'). If you get one of these messages,
use i literal simulator command (with null contents) to chop up the test.
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Literals may not be nested inside a compound test step or inside a function
that is called from within a compound test step. Also, you should not expect
dynamic storage to be preserved while processing a literal - flushing the test
vector takes a long time.

10. Printing messages

Printf and all other C 1/O procedures are executed during the creation of
the current. test vector, rather than during the execution of the test itself.
Hence, all prinif output occurring during a subtest will precede any ICTl-ST error
messages. Consequently, IlCTESr provides special print routines, eprintf arid
mprintf, that are synchronized with errors from the test itself.

When a compare error occurs, ICTEST first prints the most recent eprintf
message prior to the sense test step, unless this message has already been
printed. The ICi'ESb error message is then output. klprintf messages are always
printed (m = niandatory). Eprintf and mprintf are otherwise identical to
printf.

For example,

for (i = 0; i != 64; i = i + 1)
eprintf ("input was 7.d, expected output was %d\n", i, i'i);
X i;
Y =i;
Out =? i * i;

1]
will print an eprintf message followed by an error message each time the actual
output does not match the expected output. If you use a printf instead of an
eprintf statement, however, you will get 64 printf messages followed by any
error messages detected by the test. If you use an mprintf instead of an eprintf
statement, you will get 64 mprintf messages with any error messages inter-
leaved between them at the point where errors occurred.

11. ICTEST diagnostics

The error messages output by ICTEST when comparison errors are detected
have the form:

•E bin-value oct-value dec-'value expression
W bin-walue oct-value dec-value filename, linenumber, portnarre

"E" is the expected value and "W" the actual value, displayed in binary, octal,
and decimal. ]Jxpres~sr.on is the right side of the sense test step that caused the
error (suppressed if the expression was merely an absolute number). The
filename, linenubver, and portnume are self-explanatory.

12. Simulation

To prepare for simulation, you follow exactly the same steps as you would
were you intending to use es-im/trim manually, See esirn(1), extract(l), and "A
Guide to l)esign Validation for E1,'271"' by Wayne Wolf for more irlrormation. Note
that if you specify node names in your IT'lib bond statement, these names, as
well as the names vdd and gud, must be defined in your ,;ipm file.

Your icTr,: program should normally begin by initializing the simulator:

IS iu; ,.,1

Deal with "x nodes unknown" problems by providing the appropriate argument



- 18-

. to iu.

Another useful command,

is *. si

drops you into the simulator's command interpreter. The simulator will prompt

you as usual, and you may issue any simulator commands that seem appropri-

ate, ending with a request to exit the interpreter and continue the test.

13. Testing
There is no particular magic to using the MINIMAL and MEDIUM testers. See

"The MINIMAAL and MIEDIJM Testers" by Rob Mathews for more information.



* Appendix A - wris-r Lest vector display
ICT'r0r provides a language for describing the stimulus to and expected

response from a device under test. Logical values are presented to and sensed
on pins; these logical values can be organized as parallel or serial streams of
bits and are typically associated with a specific phase of the clock.

The data array that contains the tcst pattern is called a test vector. Its
width is the number of pins for the device, and its length is usually twice the
numbor of clock cycles in the test (2 phases per clock cycle). Literals are not
reflected in the test vector, since they delimit subtests.

If a compiled ICTIM program is run with the -d option, the test vector is
directed to the terminal instead of the target tester or simulator. This appendix
explains the test vector display.

The display begins with the number of pins under test and the physical pin
numbers, node numbers, or node names as column headings for the test vector.
The vector is organized by lOports, ordered left to right in the order they appear
in the bonding map. The next line gives the type of each pin:

I input, active high i input, active low
0 = output, active high o = output, active low
T = three-state, active high t three-state, active low
C = •i clock, active high c = rp clock, active low
D = 2 clock, active high d = r2 clock, active low
Q qual •p clock, active high q qual (p clock, active low
R qual ý02 clock, active high r = qual •0 clock, active low
V =Vdd
G Gnd

The test vector follows. A line of all plus symbols indicates aflush, i.e., the
end of a subtest. All lines (vector rows) between the flush lines are sent to the
target as one vector.

Each line of the display represents a row of the test vector (a time frame),
The symbols that appear in the vector are defined as follows:

Symbol VeaninQ

d Drive stable input pin to 0
D Drive stable input pin to I
v Drive valid input pin to 0
V Drive valid input vin to I
s Sense if pin is O
S Sense if pin is I
c Drive clock nin to 0
C Drive clock pin to i.
S Drive cualifled clock pint~o 0 for this time frame only-

Q Drive qualifiied clock pin to 1 for this time frame only
w Wait until pin is 0
W Wait until pin is 1
- No activity for pin

1' Pad - required no activity for pin for this time frame
x lIrror - conflictina actions for- pin for this time frame

Os and Is are physical, not logical, values at this point, so they will be inverted if
the port that. contains the pin is activclo.
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At the end of each line is error handling Information, It permits icTEm r to
reconstruct the original logical value and to issue appropriate error messages.
For each pin sensed during this vector line, three numbers (separated by com-
mas) and a code will appear to the right of the test vector line:
1) an index to the relevant prototype error, message in the message array fol-

lowing the test vector,
2) a unique identifier for this particular value,

3) the bit position in the sensed value of this sense request (the least
significant bit position is numbered zero), and

4) a code that indicates whether this is the final bit of this value and whether
the data is active-high or active-low:

Code Meaning

f Final bit, data active-high
space Not final bit, data active-high

F Final bit, data active-low
underbar I Not final bit, data active-low

For example, a single test line might be:

-dDcCss-- 0,5,14 0,5,15f

meaning: the first, eighth, and ninth pins in vector are idle; drive the second pin
low; drive the third pin high; clock the fourth pin low (pl, since first clock pin is
always •4): clock the fifth pin high (rp2); and sense the sixth and seventh pins and
expect low values.

At the end of the line, since two pins were sensed, we find two error han-
dling displays. Both displays point to error message 0, and since both contain
the unique identifier 5, they are two bits of the same value expected from a port.
The sixth pin in the line is sensed for bit 14 of the value and the seventh pin in
the line is sensed for bit 15 (the final bit) of the value. The value is active-high
since the code in the first display is a space, and the code in the second display
is anf. (It can also be inferred from these two error handling displays that the
sensed pins belong to an lOport declared as segmented 8 by 2 with lsb output
first and valid on je - bits 0-13 were probably sensed in the preceding lines.)

The first test vector is the initialization vector, automatically generated by
icWESE. The final test vector is terminated by a line of asterisks.

The line after the asterisks specifies the number of prototype error mes-
sages. Each prototype error message includes the filename and line of the
relevant test step in the source code, and the original expression from which the
test value was computed. An example of a prototype error message is as follows:

testl.ict 29 0 1 i~i

i0i is the expression from which the expected value for the output port was com-
puted, on line 29 of test lict. The output port is indicated by the fourth entry in
the line, the 1. This number is an index into the lOport names that were
declared in the bond statement, counting from 0; it is the second bonded port in
this example. The third entry in the line is 0 for a sense test step and I for a
store test step.

An example of a prototype error message pertaining to a store test step is:

testl.ict 29 1 1 i
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The value sornsod at tho output port will be stored into the variable i, The other
information is as above.

0
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ABS'lAC17 ssumiptions
AI~TThe clocking discipline rest~s on three 'basic

A two-phase clocking discipline for digital ICs can assumptions:
guarantee freedom fromn clock skew, critical 1) All input and initial values are digital.

* races, and other timing problems. In this paper, 2) The system is two-phase and synchrono,.s.
we present such a dis'cipline: a notation, compo-
sition rules, and early results from verification 3) All log ic and wiring delays are pyositiv-e and
tools. , bounded (less than some fixed manz:num

value). No knowledge of r-elative &!oays
UNTODUCTION among circuit paths is used.

Sooner or later a designer of digital circuits must The first assumption is important. The disc.-:!ine
face the problems of clock skew, critical races, guarantees continued digftal operation, l .it

and hazards. Generally he does a timing analysis needs an initial starting point and c'gital ir:.*.s.
that uses the tedious and error-prone process of The second requirement has two bases. F.-t. a
calculating delays and deriving timing diagrams two-phase clocked systern is a very pra, *.cal
to check for errors. Alternatively, he may per- method for designing most MOS ;Cs'. Sc:,nd,
form timing simulations to test a circuit for a and more importantly, it can be shown the* two

repesetatvesetof npusa process that may fi:ase;ser needed to avoid critical races if -ela-
leav erors ndeectd. v d aysbetween different paths are %.u-ik-

This paper describes a different approach: to flownf.

guarantee correct operation despite uncertainty The Ainal assumption arises fromi the gca: of
about delays in the circuit. Tlhe result is a clock- immunity to clock skew and races. To ac.-.evd
ing discipline that deals with timing abstractions this goal the discipline mu4st insure a desir-. will
only. It. is not based on delay calculations; it is work under all possible circluit, delay cond';--. :rs.
only concerned with correct, synchronous opera- Accordingly, we must not assume any), ivlcr, cir-
tion at some clock rate*. cuit path is faster or slower that anyoter :it h.

Theexaple wepreentaredrawn from nMOS This asmption is especially important f!:r IC
IC design. However, most of the ideas are appli- designs where wirirr. delays can poltentially :-e a
cable to any two-phase digital system. domiunant factor aniY are uinsknown until la)yx.t is

finished.
THEK CLOCKING DISCIPLINE This assumption gi'ves rise to another cons' -a,;-nt

as well. To insure finite delays and digital siznals
Ti~s clocking discipline is a method for produc- h ls falwbeeoliaima oi .s
Ing circuits that are free from t miming errors. It be restricted. Combinational logic cannot .:nae
consists of two main parts: a notati on for signal any unclocked feedback loops. ' uch loops :an
types, and composition rules for legal circuits. potential ly oicillate, with no bounded se-.:.ng
Ini effect, the notation and rules define a syntax time.
of clock ing-correctL circuits that can be checked
by auditing tools, analogous to the syntax and Notation
type checking done for computer programs. A notation of signal types and clocks denves
A design that follows the discipline is guaranteed from. these assumptions. To motivate the '.-*a-
to haeno errors due to clock skew, critical tion..consider the dynamnic latch shown in F:.u're
races, or hazards. A more ncciiratc simulation 1. The input signal mnust satisfy timing rec..-.re-
results: a circuit that is free from timing errors rnents with respect to the clock (.-,) to emisure
can be simulated without fear of faulty race that the pass transistor will Properly latch the
predictions. input vau.In particuix.tei-ptnu~b

valid. in a window around the fallinAg edi,, t
providin setup and hold timies required b% the

_________latch. Such a signal becomes valid on pha.,q 1.
This research wais sponsored by DoD ARPA under contract denoted v 1p..

* MDA 00.1-79-C-06130. Figure 2 illustrates a represent~ative set of c!>7,k-
*hia philosophy is also shared by sel-t-imed asynchronous in types. Clock tvypes (1 and qualified it) arc -.-g-
circuits .niaist hat establish thei time and scqu'mnce
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oa will have outputs that arc sp, (see Figure 3a).
P, A memory element formed by a clocked pass

'What timing ...guarantees "latching" transistor tint] Inverter uAUL change the signal
hehere? type (moc Figure 3b). If the Input Its viol or 4so,, theh/output is sp,. This is the foundation of the two-

phase clocking discipline, p-clocked storage
nodes are time-bounding elcments. They are the
points where values must have settled in time,

Figure I1. A o. clocked dynamic latch, and where values are held (and in some sonse
converted) for the opposite phase.

references for the data types (valid o and stable Note that an si, signal may not change value dur-
p), The two sets (clock an ddata) are separate. A in w the entire or period. When an sF siena, is
clock signal is never a valid data signal. This AEd with a p, or q~., clock (see Figure dc), we
reflects the ftict that a clock cannot SaLisfy the get an output that fits the definition of a qo,
setup and hold time requirements with respect clock. The output cannot glitch. It either rmim-
to another clock without a race. ics a Vo clock or remains low as shown in Figure 2.

The properties described above form composi-
tion rules for building clocking-correct circuits.
They are the basic rules we can use to create a
isyntax of legal circuits.

,U A Simple Clocking Discipline
S_[ | " • i L. A simple clocking discipline can be constructed, • • ,with only the six timing types ol, Ol.,qP1, qj~e, si,,

and spa and the composition ru es shown in Fig-
Ovl _ure 3. A legal circuit comprises an interconnec-

tion of memory elements and combinational logic
such that all inputs to memory elements receive,Vo signals of the proper types: clocks to the clock, ,, !inputs and stable data signals to the data inputs.

Vri•i v•v ; These structuring rules are equivalent to requir-
Sol ing that the circuit can be two-colored', one

color for ;, and sp, paths, another for v and so2.
All together, the notation and rules define a syn-

Figure 2. Some representative clocking tax of-clocking-correct circuits (see Figure 4).
types, showing the sequence of events.
v, and s stand for qualified, valid, and
stable.

Note that all the signal types are invariant given 8 ME XIs0 CL•

arbitrary but bounded skew and delay. For
example, a vo, signal is valid some delay after i,
rises. By stretching the O, period, we can
guarantee that the vo, signal is settled before the
setup time required by a i', latch. Similarly, by 1,| ."2
stretching the gap between i, failing and p2 ris-
ing, we can guarantee suflicient hold time in the
face of clock skew,. Figure 4. A typical two-phase finite state

machine show the syntax and consistency
Composition Rules of the clocking types and composition
Now let us investigate some of the properties of rules.
these signals With a little thought we can see
that none of the data signals change types when
they go through combinational logic. Further- An analysis of the small example in Figure 5 will
more, combinational logic that has all its inputs give the reader some feel for the utility of the

X Z I Z zo q,

Xvl, => Zvj, lvp, => Zsv, Xvp, is illegal
Xs1., => Zsjol 180: => Zsvg Xso, => Zqpl(a) (b) (c)

Figure 3. Composition rules for a) combinational logic with bounded de-
lays. b) memory elements, and c) qualified clocks.
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clockling discipline, The figure shows a memory race problems, A unit delay simulator' will now
elcment with st.orage iit node 3. f'li node is adequately predict the outcome of any ruces
periodically driven through 'If or Tr2. Will this because they are not critical races-they have no
circuit work? effect on the fInal output.

It would be nice it the circuit could also be
eautly modeled by a switch simulation. Unfor-
tunatcly, there dre still a few remaining prob-

G1 e1ams, o.g,, drive fight (a multiplexor that allows
Aspa two gate outputs to fight each other), and charge

leakage off of a storage node.

Bap, The clocking discipline and auditing tools could
T1 I3 preclude these problems but the added restric-

Lions would be costly. Nor example, we could
Cq, N eliminate the danger of charge leakage by

requiring all memory elements to be refreshed
Ds9 1  every clock cycle. Currently, the designer is

responsible for avoiding these problems, A
______ Iuswitch simulator that could detect these condi-

tions combined with the clocking discipline,
Figure 5. An example for analysis using could guarantee a completely accurate func-
tie clocking discipline. tional simulation of a design's operation.

Results
Let us examine the top branch first. Gi has two The clocking discipline has been tested on eight
inputs: V and Aspa. It does not fit any of the student and research IC projects. During the
composition rules given in Figure 3, so it is ille- design phase these projects made use of prelim-
1al,. An soR signal can change value several times inary clocking discipline concepts, but the audit-
Curl the v period. The output at N1 is a ing tools were not yet. available. Furthermore,"glitcny' qualified clock that can destroy the time constraints prevented all but a few from
value stored at N3. doing even minimal simulation before fabrica-
In the bottom branch, the inputs to G2 do fit the tion.
rule shown in Figure 3c, so N2 is qvi. However, a During the Winter quarter of 1982 the fabricated
q9p signal is not allowed as input to T2: only vp1  ICs were received and complete electrical tests
and sip signals may be latched by a memory ele- and simulations were done. At this point the0ent. The race between the falling edges of Eqr, paper designs were also checked with the audit-
and Cqpl through G2 makes the value stored at ng tools. The results are shown in Table I.
N2 indeterminate.
It should be clear that if signals A and C were
both si,, the circuit would work and fit within the
clocking discipline. This example shows some of Result number
the usefulness of the discipline. The clocking dis- Clocking, simulation and chip ok
cipline becomes increasingly valuable as the cir-cuits analyzed become bigger and more complex. Non-fatal clocking error; simulation and chip ok

Fatal clocking error; simulation could detect 2
The simple disciplinc described so far is too res- Fatal clocking error; simulation could not detectI
trictive for MOS IC designs. In practice we have
found it necessary to include such basic tech-
niques as prechargirng, sharing of bus lines across Table t. Resaudts of testing u eaht IC
clock phases, and feedback for static memory designs with auditing tools, sims.ation,
elements. These techniques have introduced new andelectrical tests.
pitfalls (such as charge-sharing), but they are
caught by the auditing tools described next. The experience with these designs has demon-

Auditng Tools strated that. the clocking discipline is an effective
and practical technique. The auditing tools are

The clocking discipline can help a designer pro- particularly useful because many errors can be
duce cleaner, clocking-correct circuits, but mis- caught at an early stage, before simulation.
takes will still happen. Auditing tools can elim- It is interesting to note the types of errors found.
inate those mistakes. These tools look for such In two cases non-fatal timingý errors were flagged
errors as clocks used as data, data signals used that pointed out some student misconceptions
on the wrong phase, etc. They also fly charge about prcch-rged logic. Fortunately the mis-
sharing, feed back loops, and the like for extra takes only affected the pcrformancc of the chips
attention frorii the designer, rather than their operation. Three designs had
Once a design has passed the auditing tools it fatal timing errors. In two of these cases addi-
should be completely free from clock skew and tional simulation could have caught the error.



* However, the third case had previously gonethrough extefnsive sim lation and was expected
to work, This dc.4ign had a critical race. The .

simulator predicted it would work, but the actual
chip failed. After the fact, the auditing tools pin-
pointed the location and nature of the race. In
the of the race. In the future, the auditing tools
will be used before simulation and fabrication.
The auditing check only takes about 5 to 10 CPU
seconds on a VAX 1 1-780 for a design with 1000
transistors. The run tirnc increaseslinearly with
the number of transistors.

CONCLUSION

The different facets of the clocking discipline
have all proven to be useful. First, the signal
notation is a valuable aid in teachin&, analyzing
and designing two-phase circuits. Second, the
composition rules and auditing tools guarantee
that a design will be free from Liming errors due
to clock skew, races, or hazards as well as
flagglng other potential problems for extra atten-
tion.
The clocking discipline is a practical technique
that guarantees clocking-correct designs, and
more accurate simulations. The result will be
reduced design time, fewer design iterations, and
cheaper working designs.
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ABSTRACT

The High Yield Memory chip (HYM) was designed at Stanford to
test our newest design tools. The chip was explicitly designed to be
highly testable and to correct for single bit hard errors. The
results of extensive testing of the chips are recorded in this
report. The report consists of sections that describe the tests and
then sections that describe the results of applying the tests to
chips from different fabrication efforts.
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Testing the I ligh Yield Memory

nim Saze

ISL, Stanford University
VLSI File #821019

The initial tests were performed on 12 chips from Mosis run M18N. Of these
chips, 4 had storages times of several seconds, 6 had storage times of 500J.s,
and two had storage times of 50,4s, Given the speed of our tester, only the four
with storage times over a second were reasonably testable. Of the four "good"
chips, one was perfect. Another had a single row that malfunctioned and could
be corrected by the error correction circuitry. The other two chips had failures
that were serious enough to make the chips useless. On one, the precharge
failed and on the other the addressing shift register has some failure that makes
it impossible to access all of the memory.

While it was encouraging to have one perfect chip, the results as a whole are
disturbing. Firstly, the great range of storage times (5 orders of magnitude) is
not reflected in any of the parameters returned by Mosis. Secondly, many of the
testing circuits failed in ways that suggest breaks in relatively short lines
(although we haven't been able to see such breaks) and this suggests a high
defect density. Finally, the chip was designed to be very testable but it still
required a great effort to locate the problems - and we still have no real indica-
tion of how good our design was.

Update for run MIDV: this time we had 14 chips that worked out of 30
tested. Of course, a few new mysteries were added to our collection, and have
not been resolved.

run number dead no storage no defect correctablel
- -time

M18N 12 1 8 1 3
MIDV 30 3 5 13 14

Storage time
Since our tester is relatively slow (circa 4 microseconds per pin toggle),

storage time is critical to the successful operation of tests. The storage time
test consists of loading l's into a bank of latches in the encoder/decoder, and
then gating the output of the latches onto the pads. By using a scope, one can
then watch the output pad go high and then, one storage time later, go low.
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chi time
.1 7

3 5
4 3
5 8
bI 40e-6
b2 400e-6
b3 400e-6
b4 400e-6
b5 400e-6
b6 40e-6
b7 400e-6
b8 400e-6

Address unit
The address section of the HYM chip is a'shift-register. In normal operation

a single one is clocked through the shift-register. The column that contains the
one-bit is "selected", and can be put in either read or write mode. There are
three tests for the address unit.

Test 1 enables all of the pass transistors in the shift-register (El = 1, E2 =
1) and thereby converts the shift-register into a chain of 100 consecutive invert-
ers. The basic operation of each inverter, and the continuity of the chain, can be
checked by setting the input to the chain to 0 and checking that a 0 is output,
and by setting the input to 1 and checking that a 1 is output.

Test 2 clocks the shift-register and sets the input to alternate l's and O's.
By checking for alternating O's and I's at the outputs, the pass transistors can
be checked, as well as various timing bugs.

Test 3 sets the shift-register to O's, sets the input to 1, and then clocks 50
O's through the shift-register, The output is then checked to see if it has 49 O's
followed by a 1 and then another 0. This test verifies that the shift-register has
the correct length and will perform as required for the operation of the
memory.

hi testl testZ test3
Y Y v

3 n n n

4 _ . . .. . y_.
b2 y x ,

bR v . y_

b4 V y
b5 v Y Y_

Y . y

0 V , Y,bO y Y



The tincder/decoder unit. has two lat~ches: an in-going &lach and an out-
going latch, Thure arc two multiplexors: one connects the tri-state pads to one
of the error Nignal, true out-going data or complemented out-going data, and the
othvr conivze~'tt tho word slection niultiploxor to either the true in-going or corn-
plonent~od in-going daxta, rhore are three tests for the encoder /decoder,

Toot I chocks tho basic operation of the latches and their associated multi-
plvxors. T'his Is done by loading a value (all O's or all 1's) into the in-going
lLftehev4, On the next, cyclo, the data is read out by multiplexing it, from the out.-
puLts of thev in-going latches, through the out-going latches and the out-going
lat~ches' multiploxor to the pads, This tests that, the two multiplexors work to
some exteant, (does not test. the oporation of the error signal output.), that the
In-going lat~ches can store data, that, all four inverters associated with the
latches work and that there are no breaks in the multiplexor control lines (since
the multiplexor control lines have output pads on their non-driven ends).

Test 2 chocks the operation of the error detection circuitry. This is done by
loading the out.-going latches with zeros, except for orne latch that has a one.
The in-going latches arc then loaded with zeros, and the multiplexor is switched
to output the error signals to the pads. This checks that each exclusive-or gate
functilons and that, the error signal can be multiplexed onto the output pads. In
addition, the "ok" line is checked each time to make sure that it is correctly
or-lng thie outputs of the exclussive-or gates. A side effect of this test is to check,
once more that tLhe in-goingv latches have storage time and also that the out-
going latches have storage time. Also, an additional series of tests are per-
formed in which the out-going latches are loaded with all I's except for a single

* 0. Finally, a test, with no errors is included to verify that the "ok' line is not
stuck At. 0.

Test 3 checks that the "preio" signal can in fact precharge the word selec-
tion multiplexer.
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S test1 test.2 testa

3 Y n% V
4 y y y
5 1v11 n# v

bl - -- -,

b2 -, ....
b3 .....
b4 .....
b5 - ....
b6 .... , -

b7 - - -

_ b8 ......

Invalid due to other errors

* Detected some malfunction in the compi line.

% Can't read error values, suggesting that the erro line is broken.
# A failure when the error value is 1111101111. This value does not seem

to be stored or remembered correctly, but this may be a read-out
problem, since the error value is returned correctly. The value read
out is 1111100111; error value is correctly 0000010000.

0
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Precharge
The bio lines can be precharged. There are two tests 'of the precharge logic.

Testl is a basic test that first allows the bio lines to discharge, and then
precharges them. The circuit is considered OK if the bio lines are first 0 and
then 1. One test is made for each position of the selector.

Test2 is a diagnostic test, based on a hypothesis that the memory may have
some shorts between the column select lines and the bio lines. This test is basi-
cally the same as testl except that column selects are also set to 1's.

ChiR testl test2
1 %y- -y
3 Y* VL

4 n n
5 y# . y%

bi_ -- --

b2 -- --
b3 .. ..-

b4 - -

b5 -- --

b6 -- --

b7 .. ..
bS. -- --

S-- Invalid due to errors in previous tests

* word 4, bit 2 would not precharge

# word 1, bit 7 would not precharge
% word 1, bit 7 is directly controlled by read enable



STesting the memory plane
The raw test accesses the memory plane in raw mode (no error correction

used). Each word is written as O's, and read back. This tests for bits that are
stuck-at 1. Then, each word is written as l's, and read back. This tests for bits
that are stuck-at 0. The results are plotted to look like the memory plane.
There is one square per memory cell. If the cell is empty, it had no Mtuck-ats. If
the cell contains an upward pointing arrow, the cell had a stuck-at 0; a down-
ward pointing arrow, a stuck-at 1.

The error correction test, like the raw test, writes words consisting of ones
and then zeros into the memory, Unlike the raw plane tests, the error correc-
tion circuitry is activated and should correct any single bit errors.

chin raw . correcting

1 Y Y
- 3 (11_ (2)_

-5 (3) V
bi - --

b2 -- --

b3b4 -" '.~

b5.
b6 . --

b7 I -

bB --1 -

-- Tests invalid due to other problems
(1) Have one row stuck-at 0 (address problems, however)
(2) Fully correct, except that don't have full addressing

(3) One row with a cross-point failure.

0
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Appendix A
TesLing suggestions

When starting to test a chip the bond statement may well be incorrect. A
few simple tests will pinpoint some problems here. First, check that all input
pads can be driven both high and low. Second, check that all output pads are
stuck at either 1 or 0. Thbirdly, if tri-statc enables are externally accessible,
test tri-state pads in both input and output modes (also, watch power drain),

Each test should start by checking Vdd, Ground and substrate if used. No
point in testing an unpowered chip. Declare Vdd to be activelo and reverse
senses on tests. Otherwise, vdd will be initialized to 0.

When running simulations, do not initialize the simulation. This will ensure
that your test sequence drives every node that should be driven. The presence
of X's is a sure indication that your test is incomplete.

Always run you test program against the simulation before trying the real
circuit.

On a real circuit, undriven nodes seem to leak to 0, but don't rely on it.
Run your tests from the outside in. Bugs in the outer level have a strange

way of fouling up more interior levels.
Write down your test results as you go and keep copies of your test pro-

grams. It's surprising how often you will want to go back and retest some outer
level - possibly in greater detail.

The tester has a nasty habit of remembering pin values from one test to the
next. This may give the appearance of abnormally long storage times. If you
run a test that relies on charge leaking off (eg. precharge testing), you should
explicitly deactivate the contols and wait a few seconds.
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Appendix 13

O Run MI8N, M 1DV(cl--c,30)

]l t al a2 a.y , e 2, 3 b 1 b 2 ra YMum==B

3 5 n n n y , .y ... Y* y, , , .y
4 3 L v y V L y .. n ny -. --
5 i1 " V V V * y*v • y* V * V*- vovo

_bl _40 y - ---b2._ 400A v ! v v, .• - . . .. .

b3 400u v -v v .-
b4 400,4 v y Y
b5 400LzJ y v y. . "•" i'
b6 40• . v y y .. .. .. .. .. .. ..

b7 400u L..y y y . .. .. .. .. .
b6 400,U v J y, . . . . . . .

ci t0. 1 V~9- --- Y' I

c2 2 v. .y. .. .. .. y. . .. . . .

c5 1 4 .. y y .. y .•v v v V* v J v

, 6 ., 0 .. .. .. .. ..- -- -.. .. .. .. ..

c0 4 IVy y y y V y v* y V
cB <0.. .-- . . . . . . . . .
C9 7 n n n y v V V v y.c~l.O... 2 n n n y v v y v v-P v v

C11 8 V v v n n n n n n 'n
c12 8 y v v v! y y L. I n v
c13 8 a v y. v K v y y, n v
c14 7 X v v v y. y y v n V
c15 2.8 V•. y V v v V" . xL V ]
cl16 A 8 V y V V y V y * v" y vc17 <8. I . .. . .. .. I .. .... .. ..

c18 4.5 y y y y y y v !v* v y
c19 4.5 y y y y V V y y* n n
c20 4 n n n ,y y ., y n n
c21 2 v . v v y 4V v V. Y v n
c22 6.5 y v y v n n _y V - v ,
,c23., 4.5, V y y V X V v *v n n

c24 10 V v I y V v v V V V

c25 1 . y y v v v n n n n
c26 3 < 0 . v y y - y V -

c2'? .5 N. V V L n v v . n n
c2B <0.1 . . .. . . . . .

eP9 10" 1¥y V V V*n n

o0 7 [n y n Yvv - *
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Abstiract

The ML s a new algorithm for two-layer routing of rec- h alatnAe feu
tangular regions (area or switchbox routing). It routes We have developed an area routing measure that has b~
regions with the pins Alxed on all four sides and, if it fails to of the properties mentioned above, Let Us assume that wo
complete a routing, returns an estimate of the area it are dealing with a rridded world Lind that onldy Manhat'.,%
needs to complete tho problem. A new measure for ,wiring is allowed (the ex~tensionis to non-gridded and r. -,-
evaluating the difficulty of area routing problems affords a Manhattan wiring~ arc straightforward). The Mnhat,.i,
comparison between the URS and the Lee algorithms, the area measure is as follows: for each net in the probkr.%
IRS has unilci rnly superior performance, the minimum-length Manhattan path required to route it .;

computed; this computation is done independently of i..v
other nets. For two-point nets, the eomputitiori is '-.i
Manhattan distance between the two pins. Y.-r nets '

moare than two pins, it is necessary to compute a Stcui.*r
Introduction tree for the not. The minimum paths for all of the nets L.-i

In the post. most chip routing has been done using channel summed and the result is divided by the number of g7-.
routers. (A channel is a rectangular routing region with points in the region.

* pins placed on two opposing sides. Nets may run out the The resultant number represents the fraction of the pgr.
W other two ends of the routing region, but the pin locations points that musi be used to complete the routing. YL:.

on these sides are not Axed.) In routing custom Vl'Lýl we ple routing layers are accommodated by muluplq)ying
have found that channel routinng does not perform accept- number of grid points in the region by the n~urlber o! rr
ably. Custom chips often conta'in large rectangular routing ing layers before dividing it into the p'ath lengths.
regions with pins located on all four sides. In addit.ion, A satuple computatioa is shown in Fig. 1.
these regions olten do not have a preferred horizontal or 01 a a
vertical direction. These types of problems are not. suited go -- ~~
for channel routing algorithms. . - j i
Several algorithms have been developed to attack the area - L--- i
routing problem, the Leet and Iltligtower2 algorithmis beingI
the most well known. In order to analyze the performance - -

of these algorithms, we need to be able to de'scribe area -4

routing problems and to measure their difficulty. In chan-
nel routing, problems are often described in terms of their -

congestion factor and comstraint graphs. Ulgorithrn perfor- o ._]1

nIance can then bc nicasured in terms of how close to the 1114 S & £V 11 & 100i

channel congestion factor the algorithm completes theFgre.AnxmleothMahtn nise
chanel wrin Thee masures, however, do not directlycoptin.Temaue ( frmnt)+

carry over to tearea routing problem. 8opua Ion T6) (fromr =3 1 (f3(rom C) t A) (1 +1

Piropertiest of an Area Measiure (acs).1

T1here are several important properties of area routing
that an area routing mneasure must capture. Unlike many
chann-ls, where there is no Axed area limitation (nomi- For a fixed number of layers, thie lower bound given by I .s
nally, channel width c.an expand forever), area routing Mlanhattan mecasure is not always achievable, beeause '.L
problems typi)cally hAVe a definite Axed size. Thus, instead does not account ror interactions between nets. An exal-n
of talking a~bouft a number such as the congestion factor pie is shown in Fig. 2.

*for a problem, one mnust talk *ibotit the problem's Intrinsic Pie, Mahta neasuire can be used to cliussify lt r
difficulty. iiiis mcasure of difficulty should deceeN~O al

*the area of the problemt is expainded . T he mieasure should diffculty of wny gitvcn area routing problem. As the meal-
alobe indepentivnt of any particular routirng alporitlum, ure ranives from zero to one, the pi-oblem thifT~hulty

a~lso Increascs. Note that the upper boind of the iueatierc ;%
thereby providing a st~inu,%ru of comparison ao cll area three (with only one layer avoilaible). however, whlen I L-ew routing olgoriihmis measure exceed,; one the problem cannot, be cotinllovetd .-t
n~aesarviwIsuflnagondby ~D*AWIUAwundearaeotrt MDA9O3-?7)C-OO8O. the given number of layers.
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S - --...~ The M4anhattan #krea measure shows that the Lee algorithmi
£ perrforms quite poorly for gecnerali Area routing problUms.
* .. ~.. n response we have developed an algorithm, the Loop
4 - '~:; IRouting Scheme, that has much bettor performance and is
* ' else mouch faster than the booe algorithm.
a U> "The ILoop Routing Scheme (LRS) algorithm takes advantap
a - of the "radial" symmetry of area routing problem.4 Wires

d S 6 9 41 £ 0 S S enter the routing region radially (from the pin'4) and are
11gure, 2. An example of a problem that cannot be connected using circular segments within the routinig
salved In the lower bound given by the Manhattan region. For actual lmplemcntntarim the circular and rsidial
measurc with a limited number of laycrs, 1he segments are mappcd onto a Manrhattan geometry syitcm.
Manhattan measure for two layers is (2 + 4 + 8) The basic IJRS algorithm will be described assisumiing a
/ (10 0 10 - 2) =.00, 'lho besit two laycr solution square &ridded routing region, Extensions to rect 9 igior
(assuming wires can run along the cdge of the regions and non-&ridded systemns xre straightforword
routing region) is (2 + 4 + 13) / (10 0 10 02) =.07. The first step in the algorithm is to assign cachi net to its

own "circular" track. Each tirack is square in Shope arid is
Ivalunt.on of the I"e Algorithm centered around the middle of the rokiting! region,

TheMahata masrehas been used to determine the Succeeding tracks are built growing out from tie center or
per'formance of several area routing algorithms. This Is temtn ein h nta aoto h rcsi hw
done by gcneraýting a series of random examples; the algo- in ig.'~ 4.
rithm under test is then run on each example. For a given
range of area measures (computed for each test case), the
percentage of those that the test algorithm is able to sue- urwi
cossfuiiy complete is then computed. Fig. 3A shows the ~UIflr
completion data for the Lee algorithm.
For those m'aniples where the test algorithm is able toI
complete the routinr, the wire length used by the test
algorithm is divided by the product of the grid area and UWUIlIft'

the number of layers avzulhble. This percenfage of ime I UM3U U

can then be compared to the ManhattLan measure to see Fgr .Iiillyu ftak o h B lohow efficient the test algorithm was in its LSO of space. Fgr .Iiillyu ftak o h R lo3 The cfficiency of the Lee algorithm is shown in Fig. 3B rt.i

- A net can be assigned to a particular track, only if ill of the
pins in that net can be connected to the track using a siu-s: gle radial segment. Fig. 5 gives an example.

.1 L .u...I...J......-1......... 14.... .cc ..? *.3 .* I r .6
14.6r.141 ton lk-ea N..u~

Figure GA. Performance of the Lee Algorithm,
The test p~roblemns were 50 by 50 grid points in
size and consisted of two point nets. Each curve -

represents At least 275 examples. In curv'e A the
pins were distributed uniformlty along the sides.
curve BI used aL triangular distribution, and curve Fiure 5. An example of net assignment to a
C used a parabolic distribution, track in the L1MS algorithmn Net A can be a~s-

signed to the track, but net IJ cannot becausC th0
pin D' cannot connect to the track with a sazigle

*1 radial segment.

* .. *~For any given track, there may lie several netsi th-it could
.'* ~be assigned to it. The choler of Aiirih net to .''iisiot fromn

0* the set of available nets is one of the flexibiltiact; of the
- .. "*algorithm.

~ . -~It there is not ernough room In thn initlial routing: area for
..... all of the circular tracks used, the routing region is

.1 1 6 4 '6 .6 expanded from the center. An ex.inipie Is shown in l'ag 8.
~ Notice that the expansion is done .,o that thle -t'liat Iiv post-

Figuire 31Ilica averageo area used by the IA0o Al- tfoias of the pan14 stays~ thle %aiat'fll w The w exp~miiled~ preb-
gorithm when it was successful in routing. Iliha lemz can be rouited co'nipletuly in the given are~a The~ MIility
test problems tire the saieians in Figure 3A. to Siva an estimate of the iarea needed to routo a problem
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9 9:

P*r 8.e Mpm no h ntilruigrgo
by ~ ~ * th-.-loihm.h otdlie hwtefur .A xmleo oa ayrfs.rnn

Is ver Imotn whe th. rouin algoi-hm Is to bue

in ur a. cxanio ofuin thsiitalrtem. eo

After a net has hicen assigned to a track, all of the pins are
connectidd to the track with radial segments, Se;gment. in nected. The LRS algorithm builds the routing from the
the circular tracks connect together all of the radial soll- center of the region. This causes the routing to be packed
wonts. Hlere again, there Is somec flexibility in determining towards the center of the routing region where there is the
which part of the track is loft unused. F'or example, a Frim- most, room. This also tends to cause the nets to run on
Fle schemce is to connect. pins so as to minimize the path paths as short as possible. instead of running around the1'ngth, out~side edges of the region. An additional advantageo of

rouUng from the center is that it. allows the US~ algorithm
layer sidgnmrent to estimate the area needed to route infeasible problems.

Afte aUof he etshav ben asiged o tack an al of The Akers algorithm, however, routes from the outside in.
the segments have been placed, the routing is as shown in Th. ' assi ouelne ah htcno lasb

Fig. 7.shortened in the cleanup pass.

0 Other Improvecments to the t1S Algorithm
There are several modifications that can be made to the
basic LRS algorithm to improve its performance and

£ ~eflclency. First, miultiple pin nets can be broken up into a
series of two-point segments that are each routed indepen-
dently; this introduces doglegs into the nets. Second, mul-c i tiple segments can be packed into a single track in order
to minimize area usage and enhance completion. Thbird,
segments between pins that both lie on the same side of
the routing region can be placed in the outer tracks to

F~gue 7 Rouingby te LS alorihm aterminimize wire lengths. The algorithm has been imple-* ~ r otn yte R loih fe menited with these improvements and a sample routing istrack and segment assignment, but. before layer shown inFig. 9.
aassingment.

Notice that there has been no layer assignment up to this
point. Since all segments are either horizontal or vertical,
ell horizontal scgmcnts can be on one layer and all vertical
segments can be on the other. Alternatively, since the LiUS -
algorithm creates tracks In a polar coordinate system,I

there Is another set of orthogonal axes that can be used
for the layer assiptnment. In this coordinate system. alljradial segments are assigned one layer and all circular....segments Are a.~signcd to the other layer.There arc several other colorings that can be considered.,.For example, one choice would exploit the quadrant sym-

.Varies both with the problemn and the track assignment,
8 shows an example of a polar coloring. .gr 0 . A sample IRlS routing which includes dogleg.
Comp~rlioot to the Akerm Algorithm and segment packing.
The organIxation of thle l.HS alp.orlthm is similar to that of
the unpublished Akerq alg~orithm"2 , htit thero Are soveral
fundtimentail dalfhrenci-t. 'Ilip IRSC~ algorithm is baq.ed on at The performance of the algorithm~ as measured by the

* polar coordinatf- Nystenm which gtai~ratitces coninect.ability Manhattan airea titastire is %hown in F'ig. 10. The fIgtire
for all pins. The Akers alrorithmn merely appreximmets aj shows that the performanice of the INlS ulgorithmn i4 quite
polar 0fgdnlZationk Ainol thuis somletimes l'eaves pins uncon.- good compared to thai. of the Lee.
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Figure 10A. Plerformancc of the I.RS Algorithm. -

The test problems were 50 by t50 grid points in
mile and consisted of two point nets, Each curve I .7i' M"M
represents at least 750 examples. In curve A the

*pius were distributed uniformly along the sides;

C used a parabolic distribution. i

cur~eII u~d a tianglardi'vtibtoon and Meurvr

* Figure 1013. The average area used by the LIRS Al-
gorithm when it was successful in routing. TheLE
test problems arc the same as in Figure 10A. Figure 11. An example of the LRS A.1iorithm uscd

on a pad rmuting example.

The LRS routing scheme can also be extended to
doughnut-shaped areas (this type of routing problem
occurs frequently when connecting the pads to a chip).
The routing tracks are built out from the central obstacle.
In this case, wires can connec, to the circular tracks from
both the outsidc and the inside of the routing area. Verti-
cal constraints (i.e., opposing pins that, can access the
same track and interfere with each other) can occur in
this scheme and must be accounted for when track assign-
iment is done. Thc algorithm has bcen run on pad routing
examples with good results (see Fig. 11).

Coocluslons

The LRS algorithm has very good performance because it
treats the rouking problem in polar coordinates. Using
polar coordinates yields sevcera important advantages.
The algorithin makes better use of its degrees of freedom,
runnirng both poly'silicon and me~tal horizontally and verti-
cally. Furthermore, it cannot box itself in, as can the lee
and Hlightower algorithms (which are the only truly bi-
directional nlgormthnis). Due to the structure of the algo-
rithin, cons~traint loops never occur. Puis is a signif'icant
advantage over the typical channel routers such as the
Dogleg, tinally. ttlthough the algorithni is able to perform
well for a wide class of rouiting problems. it is simple to

* code and fast to execute.
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1. Introduction; design as search.

Design is a dialectic between goals and possibilities (see [5]). Designers consider
possibilities in response to their current goals and they refine their goals as they learn
what is possible. This dialectic reflects the absence of a complete synthetic theory of
design. Designers must begin without knowing exactly what they want or what is
possible.

More generally, the dialectic reflects the absence of a complete theory of
problem-solving. Design is an examplJ of an ill-structured problem (see [3] and [4D;
neither the goals nor the possible solutions are well-defined at the outset. Al research
has primarily concerned itself with problems whose goals are clear, but whose
solutions must be arrived at by first considering many candidates. Studying design
forces us to also consider problems whose goals are initially unclear.

Designers often refine or modify their goals as they work. For example, a
designer may want to minimize the area of a stack; after considering several
possibilities, the designer may perceive that fewer global connections means less area;
the designer may establish a new goal, "minimize global connections".

We can augment the common notion that "design is search" by recognizing that
both goals and solutions are subject to search. Design can be decomposed into design
of solution specifications, by search in a solution space; and design of goal
specifications, by search in a goal space. By partitioning the problem space into a
solution space and a goal spAce, we are exploiting the fact that there are two search
problems with separate knowledge guiding each.

Design alternates between tension and resolution. As designers refine their
possibilities and their goals, they often create conflicts: goals may conflict; none of
the candidate solutions under consideration may satisfy the current goals. Resolution
of such conflicts involves modifying current goals, candidate solutions, or both.

We propose a model of goals in terms of design dimensions and dependencies
among them. We will see how dimensions guide the search in the solution space. We
will show how dimensional dependencies guide the creation of new goals and the
resolution of goal conflicts.

A model for a design system is proposed in which the different "voices"' in the
dialectic between goals and possibilities are acted out by different program modules.
We have not yet fully determiined how these modules interact, but we believe that
their interactions are usefully viewed as negotiations.

2. Searching the solution space.

By "solution space" we will mean the space of partial as well as complete artifact
specifications; solution refinement can occur in such a space. For a given candidate
solution some of the current goals may be verifiable, while others may not. Whether
goals are verifiable or not has to do with the level of detail of the candidate solution.
For example, a goal like "minimize area" is not verifiable for a tolution that has not
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yet assumed physical features.
From the viewpoint of a solution space search, testing candidate solutions against

current goals requires two abilities: the ability to refine a solution to a more detailed
level, to test it against goals verifiable only at that level of detail; and the ability to
modify a candidate that does not meet currently verifiable goals, to try to meet those
goals. In standard planning terminology, we need two kinds of operators for
transforming candidate solutions: operators that modify a specification at a given
level of detail, and operators that refine a partial specification to a more detailed
level. Search of the solution space is constrained by the available operators.

When candidate solutions do not meet currently verifiable goals, we have a
solution tradeoff situation. Solution modification operators help make tradeoffs. For
example, having established the goal, "minimize number of modules", we may
question whether we have reduced the number of modules as much as possible. We
select the operator, FactorCommonModule. This operator takes a module that is
shared by several branches of control after a control fork, and "factors it out" before
the fork, reducing the total number of modules. Successful application of this
operator produces a solution which better satisfies our goal.

How can we select among the available operators? We would like to only
consider operators whose effects will probably be compatible with our current goals.
With each operator we associate a set of expected effects; for example, we can expect
FactorCommonModule to decrease the total number of modules, and (unfortunately)
increase the complexity of connections. Such effects can be qualified, e.g. the
increase in connection complexity can be ignorcd if the number of factored branches
is greater than 3. Expectations provide a rational basis for operator selection;
uncertainty of prediction is the price paid.

In summary, search of the solution space alternates between tension and
resolution: refinement (to a new level of detail) and modification (to resolve tradeoff
situations). Search of the solution space is directed by the expectations of its
operators and the current goals.

3. Searching the goal space.

By "goal space" we will mean a space of goal sets; this allows us to naturally
associate a point in goal space with a solution for which the goals must hold. A given
candidate goal set may contain some goals that are verifiable for a particular
candidate solution, and other goals that are not. Whether goals are verifiable has to
do with the level of detail of the candidate solution. For instance, a goal stated in
terms 6f the area of the stack is well-defined only for stack specifications with
physical features, but a goal stated in terms of the number of stack cells can be
associated with quite abstract specifications. Knowing that the number of stack cells
in a stack strongly influences its area, we can first establish the abstract goal,
"minimize number of stack cells" early on (when it is verifiable), predicting this will
help satisfy the posted (and currently unverifiable) goal, "minimize area of stack".

We can view goal specifications as artifacts to be designed. From this viewpoint,
testing candidate solutions against current goals requires two abilities: the ability to
refine a goal specification, to introduce new (and possibly verifiable) goals; and the



4

a•ility to rationally modify a goal specification containing conflicting goals. In other
words, we need two kinds of operators for transforming goal specifications: operators
that tnod(fV a goal specification (e.g. relax, tighten, remove, prioritize goals), and
openitors that refine a partial goal specification (e.g, solicit new goals, refine old
goals, reduce current goals-posted goals difference). Search of the goal space is
constrained by the available operators.

Goals can interact in many ways. When a goal specification contains conflicting
goals, we have a goal tradeoff situation. The goal set:
{"minimize stacki's operations delay time","minimize stacki's global connections"}
is an example of such a situation; to satisfy the first goal, the stack would have
push/pop commands sent to all cells simultaneously, unfortunately conflicting with
the second goal. This illustrates an antagonistic interaction among goals. Goals can
also have synergistic interactions. For example, a reduction of area often causes a
reduction in delay time.

Goal modification operators help make tradeoffs; for example, the tradeoff
situation illustrated above can be resolved by applying the Relax operator to the
"minimize operations delay time" goal. ReduceGoalDifference is an example of a
goal refinement operator; applying it to the currently well-defined goals, { }, and the
posted goal "minimize area of stacki" can result in introducing the currently well-
defined goal, "minimize global connections in stack1".

To help us select among operators, we associate with each operator a set of
expected effects. For example, we expect that applying the Relax operator to a goal
that conflicts with other goals may resolve the conflicts; we also (unfortunately)
expect that solution optimality may be degraded if that goal also synergistically
interacts with other goals.

To allow us to recognize the different kinds of goal interactions, we propose a
model of goals in terms of design dimensions and dependencies among them. A
dimension is a property of solutions that defines a metric for comparing them (e.g.area). Most design goals can be expressed in terms of cost along a dimension (e.g.
minimize area). We view the antagonistic goal interaction illustrated earlier as

following from a dependency between the dimensions, OperationsDelayTime and
GlobalConnections:

(Antagonistic OperationsDelayTime GlobalConnections).
Similarly, the dimensional dependency:

(Synergistic Area DelayTime)
implies that achieving a reduction in area often results in a reduction in delay time as
well.

Dimensional dependencies can also capture knowledge about goal refinement
We have seen how an abstract goal, "minirnize number of stack cells" can be
established to help satisfy a related, less abstract goal, "minimize area"; this relation
fbllows from the dimensional dependency:

(Abstract NumberOfStackCells Area)

We can enumerate and categorize dimensions and dependencies among them.
cMe context in which they are applicable can be delimited by associating them with
certain classes of objects, for example,



(Antagonistic OperationsDelayTime GlobalConnections)
can be associated with the class ObjectWithRepeatingFunctionalComponents. These
classes can be arranged hierarchically to allow inheritance of dimensions and
dimensional dependencies; for example, the class Stack could inherit from the class
ObjectWithRepeatingFunctionalComponents.

Dimensional dependencies constitute a shallow design theory, as they help answer
the question, "What sets of goals are realizable in artifact descriptions?" Dependency
relations like Synergistic and Antagonistic help determine whether currently
verifiable goals are concurrently satisfiable. A relation like Abstract helps determine
how currently unverifiable goals can be satisfied.

In summary, search of the goal space, like search of the solution space, alternates
between tension and resolution: refinement (adding new and more detailed goals)
and modification (to resolve tradeoff situations). Search of the goal space is directed
by the expectations of its operators and the dimensional dependencies.

4. Coordinating the searches.

We now consider a model for a design system in which the different "voices" in
the dialectic between goals and possibilities are acted out by different program
modules. These modules include: the Design Theorist, the Problem Designer, and
the Solution Designer. The Design Theorist stores the dimensional dependencies. The
Problem Designer searches the goal space. The Solution Designer searches the
solution space. A solution tradeoff situation arises when the Solution Designer
produces a solution that does not meet the requirements set by the Problem
Designer. A goal tradeoff situation arises when the Problem Designer produces a set
of goals that is not realizable according to the theory of the Design Theorist.

A solution tradeoff situation can be resolved in one of two ways: either the
Solution Designer generates another solution that meets the Problem Designer's
requirements, or the Problem Designer makes the problem easier. This resolution
process can be viewed as a negotiation between the Problem Designer and the
Solution Designer. The Problem Designer demands evidence that the Solution
Designer isn't able to solve the current problem, in exchange for modifications of the
current problem (relaying goals, etc.) Depending on the strength of the evidence, the
Problem Designer can: refuse to change the problem; relax the problem a little; or
relax the problem so much that the Solution Designer's current "solution" actually
solves the new "problem". 1

Goals on the design process help determine the outcome of negotiations between
the Problem Designer and the Solution Designer. Such goals effect the allotment of
time and resources to the different program modules. For example, after the Solution
Designer has produced a number of unsatisfactory solutions using some of its
available resources (e.g. its modification operators), the Problem Designer may make
the problem easier, in accord with the goal "minimize design time". We introduce a
new program module, the Planner, to store the design process goals. The Planner
oversees the negotiations and swings them one way or another depending on goals
associated with the design process.
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Like the Problem Designer, the Planner can run into conflicts among its goals.
Knowing the kinds of interactions that can occur among these goals, we can

* enumerate them as dimensional dependencies; we can create a "design process
theorist" to store them and help guide the Planner, in the same way the Problem
Designer is guided by the Design Theorist's dimensional dependencies. The Meta-
planner, our final program module, plays the role of "design process theorist",
storing dimensional dependencies related to design process goal interactions, e.g.:

(Antagonistic "minimize design time" "maximize design quality").
The Meta-planner's dimensional dependencies help the Planner avoid imposing
conflicting goals on the design process.

ISimilarly, responsibility for resolving a' goal tradeoff situation can be shared by Design Theorist
and the Problem Designer. The Design Theorist will modify its theory in exchange for evidence of
counterexamples or new dependencies. This type of negotation is not a central concern of my
research.

5. Concluding remarks.

This paper has partitioned design into problem design and solution design.
Problem design is directed by the dimensional dependencies of the Design Theorist;
solution design is directed by the goals set by the Problem Designer. Design
alternates between tension (goal or solution tradeoff situations) and resolution
(making tradeoffs). Solution tradeoff situations are perceived as tension between the
Problem Designer and the Solution Designer; one or both agents can help resolve
the tension, modifying either the goals or the solutions - division of responsibility is
determined by the Planner, as it reviews its goals for the design process.

This paper reports work in progress, occuring within the framework of the Palladio
project (see [2]); the project has thus far described a set of abstraction levels that will
make what we have illustrated as a continuous refinement process look more like
discrete stages of implementation in lower levels of detail. My research is currently
focusing on design at the most abstract levels - thus far, only the representation for a"systems architecture" abstraction level (see [1]) has been implemented.

Thanks to Dan Bobrow and Harold Brown for many helpful comments on earlier
drafts of this paper; special thanks to Mark Stefik and Bruce Buchanan for helping
to organize the current version.
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Good Layouts for Pattern Recognizers
HOWARD W. TRICKEY, STUDENT MEMBER, IEEE

Abstract-A system to lay out custom circuits that recognize I. INTRODUCTION
regular languages can be a useful VLSI design automation tool This
paper describ• s the algorithms used in an implementation of a regular HE design of VLSI circuits is currently a very time con-
expression compiler. Layouts that ame a network of programmable T suming operation. Some of the recent work to help alie-
logic arrays (PLA's) have smaller areas than those of some other viate this problem has taken its lead from programming lan-
methods, but thae are the problems of partitioning the circit and then guage compiler technology, where great strides have been
placing the individual PLA's. Regular expressions have a structure uade bompr tolog were grea stride s h n
wheb halows a novel solution to these problemn: dynamic a made by using programs to convert high-level descriptions into
can be used to find layouts which are in some sense optimal Various lower level programs. The idea of a silicon compiler to convert
search pruning heuristics have been used to increase the speed of the high-level descriptions of circuits into layouts has arisen [ 1,
compiler and the experience with these is reported in the conclu- [4], 151, [11]-[13].
sie". A problem with silicon compilers is the definition of a suit-

lndex Terms-Control logic design, dynamic programming, par- able circuit description language. Some languages are basically
titionl•ng, programmable logic arrays (PLA's) regular expressions, descriptions of the upper levels of a hierarchical design. These
silicon compilers, string pattern recognition, VLS! layout. become."high-level" descriptions when the lower levels of the

hierarchy can be derived from libraries and/or a familiarity
* Manuscript received August I8, 198 I; revised January 7, 1982. This work with the class of circuits being described. The "Bristle Blocks"
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A second approach is to use a notation which gives the cx- If E is a regular expression, then the positive closure E 4 +

tcrnal behavior required. One method of doing this is to give is a regular expression which means: one or more occurrences
a sort of program which runs on a machine specified at the of E. (E++ is the same as E, E*.) W
register transfer level [II], [13]. This technique is meant to 9 If E is a regular expression, then the optional occurrence
be used for designing computer-like chips, Another notation, E? is a regular expression which means: zero or one occurrence
which can be used for specifying the controlling logic portion of E.
of any chip, is that of regular expressions. A regular expression The use of regular expressions to describe pattern recog-
can be used to describe a pattern: a sequence of states in which nizers is perhaps best seen by means of an example. The fol-
certain inputs must be seen. One can require that various lowing is the complete input file required by the regular ex-
outputs be given whenever certain patterns have been seen. pression compiler for a small example.
Some of the many uses of pattern detectors can be found in [8]. line data[2l
This paper discusses a silicon compiler whose input is a regular symbol zero(data[1 h-data12j, one(4dtallI data[21), anyo
expression and whose output is a layout for the pattern rec-
ognition circuit defined by that expression.

In particular, a way of laying out a circuit for a pattern any (one any* zero - . €ro any* one)

recognizer in a small area will be described. It is fairly easy to + (one any* zero r ze. . any* one) any

give a programmable logic array (PLA) to implement a pat- The line decLvrmtici gives the wires that are input to the
tern recognizer, but a single PLA can be rather large. At the circuit. A line name can be subscripted (with [...]), as data are,
other extreme, one can have logic to recognize each basic to represent more than one wire. One can declare any number
symbol of the pattern, joining them up with other logic. Such of lines. The symbol declaration gives the names of the symbols
a method can be proved to yield a layout with an area which that will occur in the regular expression with the values of the
is linear in the length of the expression [2], but in practice the input wires which identify a symbol given in parentheses after
resulting layouts have been found to be large. The regular its name. Here there are three symbols: zero, recognized when
expression compiler uses a network of PLA's, and it gives data[l] is a logical "1I" and data[2] is a logical "0" (indicated
layouts better than either of the extremes. by the "-" in front of data[21); one, recognized when the data

The next section will explain how regular expressions rep- wires are reversed; and any, which does not specify either "I"
resent patterns. Then the implementation of recognizers using or "0" for the data wires, so it is a DON'T CARE. Note that any
networks of PLA's will be described. Numerous networks are will be recognized at the same time as zero or one: there is no
possible, so a big part of finding a good layout involves requirement that the wire combinations for different symbols
searching for the best (or at least, near-best) division of the be disjoint.
expression. The fourth stction will discuss how dynamic pro- The regular expression itself follows the declaration. This
gramming and some judicious heuristics can be used to effect one gives all strings of symbols where either: 1) the first symbol
this search. Finally, the last section will give some conclusions, differs from the second last symbol, or 2) the second symbol
based on experience, about what the various search heuristics differs from the last symbol. This expression will be referred
can accomplish and how much they cost. to as PR2.

The pattern recognizer is a synchronous machine. The
successive symbols of a string must appear in successive clock
cycles (states) for the pattern to be recognized. Whenever the

A regular expression is a notation for representing a set of symbols seen in the preceding states form one of the complete
strings of symbols. It is defined recursively as follows, strings specified by an expression, an output signal is given.

& The symbol is the most basic kind of regular expression. The notion of an expression tree for a regular expression will
In the application to circuits, the occurrence of a symbol means be useful later on. The expression tree has symbols as leaves
that the input wires must be zero or one, according to the and regular expression operators as internal nodes. It is formed
symbol definition, within the "current state." in the same recursive manner that expressions are: the tree for

* If E and F are regular expressions, then the union E + E + F is a node containing "+" with the expression trees for
F is a regular expression which means: either E or F. E and F as children; similarly for the other operators. Fig. 1(a)

e If E and F are regular expressions, then the concatenation gives the expression tree for ((a + b)++)*. c- (d?)*.
E - F (or simply EF) is a regular expression which means: E A unary operator can be combined with the symbol or op-
followed by F. erator node beneath it. A cascade of unary operators can be

& If E is a rgular expression, then the closure E* is a reg- reduced to a single one using obvious rules. This yields a
ular expression which means: zero or more occurrences of compressed expression tree, such as the one shown in Fig. 1(b)
E. for ((a + b)++)*.c• (d?)*.

"* If E is a regular expression, then (E) is a regular ex- An NFA (nondeterministic finite automaton) can easily be
pression (used for gro4ping). Unless parentheses are used, the given to implement a regular expression recognizer. In Fig. 2
unary operators have precedence over the binary operators, an NFA to recognize PR2 is shown. Initially, the start state is
and concatenation has precedence over union, made active. At any time there may be a number of active

The following notations, while not necessary, are conve- states. In each successive clock cycle, any active states with
nient. transitions marked by a symbol seen in that cycle will make
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*• over the transition edges.) It was shown in (2) that as long as
the expressions are compressed by combining cascades of
unary operators, this method can yield a linear layout. A divide
and conquer technique is used to decide where to place the
symbol modules and connecting logic. A similar layout would

d be obtained using the systolic recognizers of [3].
Using individual logic for each symbol gives reasonable

* layouts, but experience with an implementation of this method
has shown that for small expressions the PLA method is better.

b This is perhaps to be expected, since the regularity of PLA's
(a) allows one to pack small numbers of gates more closely than

*is possible with an ad hoe circuit. Thus, the idea of using a
combination of the two methods arose. The current imple-
mentation of the regular expression compiler uses PLA's for
low-level subexpressions, connected together with logic to take
care of the operators near the root of the expression tree.

A b Suppose that one has laid out modules to recognize ex-
pressions E and F. It is assumed that these modules are rec-

(b) tangles, and that they have enable wires coming in at the left
Fig. i. (a) Expression tree. (b) Compressed expression tree. and recognized wires leaving at the right. Any input wires

required to recognize the symbols in the module's expression
Oft must also enter at the left. Then the ekpressions E + F and E

.- • F can be laid oit as shown in Fig. 3(a) and (b), respectively.
START aOperators which have been combined with unary operators can
S •AT A• L be implemented similarly, as illustrated in the layout for (E

a.. ,ny . + in Fig. 3(c). This type of layout is called an operator
t -wo split. Note that no matter what operator is involved, the two

subparts can be laid out either side by side (a horizontal split)
aR or one on top of the other (a vertical split).

"The use of operator splits might be enough to accomplish
a layout, but there is the problem that the layouts for the two

Fig. 2. NFA to recognize PR2. operand expressions might have very different sizes. This

the successors of those transitions active. States only remain would lead to a lot of white space when a rectangle surrounding

active for one cycle unless explicitly reactivated. Whenever the the whole layout is defined. The solution to this is to do a

final state is active. an output signal is given. If desired, the substitution split. In a substitution split for an expression E,finl sateis ctie, n otpu sgna isgivn, f dsird, he some node D deep in the expression tree for E is replaced by

machine can keep operating so that it can detect overlapping a dummy node. Then the expression rooted at D is laid out (thb

occurrences of patterns. dummy tree), as well as the now smaller expression E (the
sthedra ivhtionwar. Fof dtans N te e a2]. pfather tree). E will have an enable dummy output wire and a

straightforward. For details, see [2]. dummy recognized input wire. The former is attached to the

enable input of D and the latter is fed by the recognizcd wireIll. LAYOUT OF REGULAR EXPRESSION RECOGNIZERS of D, as shown in Fig. 4.

An easy way to implement a regular expression recognizer The method for laying out a regular expression, given a
is to use a PLA to simulate the NFA corresponding to it. Each compressed expression tree is to either: I) use a single PLA,
state can be represented by a register whose value is calculated or 2) do an operator split or substitution split at the root and
by the PLA using the inputs and the current state values recursively ,ay out the subparts. This accomplishes the goal
(which are fed back from the registers). Details of this method of using logic to form a network of PLA's for recognizing the
are given in [2]. regular expression. What remains is to specify how to choose

The problem is that the area used by such a layout will tend among the various layout strategies. At each stage of the re-
to grow quadratically with expression size. A method that leads cursion, the following choices must be made.
to a linear growth of the required area is to implement each C 1) Should a single PLA, an operator split, or a substitution
symbol as a register, together with logic which tests whether split be used?
or not the symbol is on the input % ires. The "symbol modules" C2) If a split is used, should it be a horizontal or a vertical

* have an enable input and a recognized output. By using ap- split?
propriate connecting logic, it can be arranged that the symbol C3) If a substitution split is used, which descendant ex-
modules act like the states of the N FA, where a state is acti- pression should become the dummy tree?
vated by asserting its enable input. (Actually, the circuit is not One option of the regular expression compiler is to make the
exactly like the NFA because the state memory is distributed above choices guided by the principles that PLA's should be
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of input wires needed. Thus, even if two subparts have equal
En weights, the layout for one subpart might be taller if it uses

riiore inputs.
* Finally, some optimizations are performed when laying

out a PLA (having an effect similar to factoring the expres-
sion). This is another reason why the weight of an expression

(a) only roughly predicts the area of the resulting layout.
ETo overcome some of these problems, the regular expression

compiler has another option: search systematically through
a specified collection of layout strategies, looking for the best
one.

F
IV. FINDING OPTIMAL LAYOUTS

(b) An exhaustive search can find the best layout for an ex-

pression, given that one is using the general scheme of operator
"and substitution splits with PLA's at the lowest level. All
possible combinations of choices CI), C2), and C3) can be

(c) tried, using all possible layouts for the subparts in the case of
Fig. 3. Operator splits. (a) E + F. (b) £"F. (c) (E" F)+. splits.

Clearly, such an exhaustive search would be very time
& --- du" consuming, even for quite small expressions. One way to avoid

&a lot of the work is to note that the dimensions of a layout for
o" an expression remain about the same when the layout is made

part of a layout for a containing expression. There is often some
height increase when a module is incorporated as a subpart in
a split because the input wires to the other subpart may have

Fig. 4. Substitution split, to run through the module. This effect can be calculated,

however, so the conclusion is that the strategies for laying out
neither too small nor too large, and that when splits are used a given subexpression need be calculated only once. The sig-
the subparts should be approximately equal in size. In this nificance of this is that a sort of dynamic programming can be
method splits are performed by looking for a split which yields used to effect the search.
subparts closest in size, and the recursion continues until the Dynamic programming can be used to find optimum
expressions are under some prespecified size. The "size" in strategies for problems that can be broken up as follows.
terms of area is approximated by the weight-the number of Starting out at a first "stage," some choices are made leading
leaves in the expression tree. to a collection of smaller, similar problems-the second stage;

This heuristic method produces fairly good layouts quite this continues until some final stage is reached where there are
quickly (in approximately 7 s on a VAX/780 for a 150-leaf no more choices to be made. If the problem is such that a
expression). However, it usually requires some playing around knowledge of all the optimal solutions at stage i is sufficient
with the parameters of the method to find the best layout to find all the optimal strategies for stage i - I, then dynamic
possible with this scheme. Even then, a better layout is usually programming can be used. The layout scheme satisfies this
possible. There are several reasons why the heuristic method condition (approximately), where the problems of stage i are
can be improved upon. finding the best layouts for subexpressions whose roots are at

• The idea that two subparts should have the same area is depth i in the expression tree.
hot strictly correct. What really is wanted is for the heights or One problem in applying dynamic programming to layout
widths to be about the same. Now, the PLA's generated from is that one needs more than just the minimum area layouts for
regular expressions all tend to have similar aspect ratios the subexpressions: a slightly larger layout may be better to
(height/width), so that if the subparts are simple PLA's, then use as a subpart in a split if its height (or width) is closer to that
the "equal area" principle should hold. It seems plausible ihat of the other subpart. What is really needed is the best area for
if the subparts are themselves split, then there are some ap- all possible heights and widths. In practice this would probably
proximately square layouts for them, and so again the equal mean keeping all layouts tried, which would eliminate most
area principle should yield a reasonable layout. However, an of the savings that are entailed by the use of dynamic pro-
unequal area layout could be even better, and in practice there gramming.
are many cases where one is better. The solution to this problem is to use an approximation:

e The weight of an expression is only a rough indication of divide up the continuum of possible aspect ratios into a small
the area needed to lay it out. If the layout involves splits, then number of intervals, and for each subexpression keep only the
the shape of the expression tree affects the economy of the smallest area layout in each aspect ratio interval.
layout. If the only splits allowed were operator splits, then the search

a The area of a layout depends somewhat on the number for a layout could follow the standard dynamic programming



procedure. Start at the last stage (the lowest leaves) and find To retain the advantages of dynamic programming, a dic-
layout strategies there. then move up the expression tree, trying tionary of layouts is kept so that layouts need never be found
single PLA's and operator splits. Trying an operator split is twice for the same subexpression. The dictionary can contain
a relatively quick operation, where the dimensions of the layouts for each of the possible prefix trees of each subex-
children are added to the logic dimensions to give the resulting pression. This is allowed by having the dictionary indexed by
layout dimensions. (There is also an adjustment for input wires, (e, I), where e is an expression node and I is an excision list:
as mentioned above.) nodes that have been replaced by dummies.

It is the substitution split which greatly increases the work Here is the final algorithm for finding layout strategies.
required to find an optimal layout. After a descendant ex- There are three tuning parameters to allow trading off search
pression is replaced by a dummy node, optimal layouts have thoroughness for execution time: S, the split-ratio, L, the
to be found for the father tree. Only some of the layouts found lowest weight allowed for a PLA, and H, the highest weight
so far can be used: those for subexpressions not involving the allowed for a PLA.
dummy tree. Thus, a somewhat independent layout problem FindStrategies(x:ExpressionTree, l:ExcisionList):
must be solved for each possible father tree, and each of those IFind strategiesfor layout of the expression x,
will involve still more father tree layout problems. The work where the expression nodes on I have been replaced by
required iqcreases dramatically as the root is approached be.
cause there are many more possible father trees (one for each dummiesf
descendant, not including the subproblem father trees). falreadytfound s ,ra)egesTfor (xtr)J

In fact, by the time all the subproblems have been solved for If x.weight e Ld ... HIe the (
an expression, layouts will have been found for all possible TryPLA(x,I)
prefix trees. A prefix tree is what is left attached to the root LA ix re .
after any combination of descendants have been replaced by begin
dummy nodes. bin

To get some idea of how many prefix trees there can be, FindStrategies(x.rchild,l)
consider T", the complete binary tree of n levels. Let S. be the TryF peratorSplit(x,l)
set of prefix trees of T., and N, be the number of trees in Sn. end
Any binary tree with 5 n levels is a prefix tree of T.. A binary for all descendants y of x such that
tree of 5 n levels can only be formed by having a root with a (x.weight-y.weight+I)/x.weight e [ IS... S1 do
member of S,-I or the empty tree as left child, and a member weig
of S.-i or the empty tree as right child. Therefore, ExciseDunmy(xy) Ireplacey by DUMMY in

Nn = (N,,-, + 1)2 >- 22R-1. X1

ST, has m = 2n - I nodes, so N,, > 21n/2. This calculation FindStrategies(x,Append(ly))

shows that just enumerating the possible father trees for a TrySubstitutionSplit(x,l) y)
balanced expression or 30 leaves (i.e., about 60 nodes) is out b od
of the question. ed FindStrategies

An obvious partial solution to this is to have some minimum end Findptratei sexpression size--say 6 leaves--below which an expression will TryPLA, TryOperatorSplit, TrySubstitutionSplit:
exprssin sze-ay levesbelo whch n epresio wil IThese procedures calculate the dimensionzs of the layouts

not be considered as a subpart of a split. This has the effect of implied by their arguments. For the splits, all possible
chopping off some number I of the most populous levels from lay their coments o f splits, the
consideration as dummy tree roots. This changes the above layouts resulting from combinations of strategies for thecacuatonsotatno N-i>2m/21+ . it this imrv- subparts are tried. The best strategies in various aspect
calculation so that now Nni > 2"11.With thsimprove- ratio ranges are entered into the dictionary. Iment, one could perhaps handle expressions of 30-50 leaves, LookupStrategy(el):
but it might take a long time, since at the very least one PLA I Thisfunction looks up in the dictionary the layout strat-
has to be considered for each father tree tried. egies for expression e with excisions list 1. Any members

To be able to handle expressions with up to, say, 300 leaves, of I which are not descendants of e, or are descendants
the search needs further pruning. The "equal area" principle of other member s of 1, or areturnedant
mentioned above suggests that splits where one subpart is of other members of h , are ignored. INIT is returned ff
much bigger than the other are likely to waste space. The no strategies have yet been sought for (e, I).
regular expression compiler has a split-ratio parameter S. V PERFORMANCE OF THE REGULAR EXPRESSION
Splits will only be considered when the weight ratio of one COMPILER
subpart to the other is in the range [ I/S, S]. It has been found
that in practice S - 2 yields layouts as good as S = -. The regular expression compiler has been implemented in

When all splits are not considered, there turn out to be a C on a VAX/780. It can produce layouts using either the
large number of subexpressions whose layouts could not pos- heuristic method or the dynamic programming method. By
sibly be used in the layout for the whole expression. This means appropriately setting the parameters for the heuristic method,
that the dynamic programming paradigm of working on the one can also find the layout as a single PLA or as a network of
expression tree bottom-up wastes a lot of calculation. It is logic connecting individual symbol recognizers. This section
better to work top-down, looking for subpart layouts whenever will report how the compiler performs on some sample ex-
required. pressions.
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The first series of expressions is the PR series, The PR2 ex- rABLE I
pression was given in Section II. The others in the series have DATA FOR PR EXPRESIONS

the same line and symbol declarations, and the following Nan* WM14ht Dcpih I.(-) , a s A,• T;

definitions (any' is used as shorthand for n occurrences of r" i s 14 s2in ,. . 2.,
any): mn uh e PA 6.17,.i.

heurlout 4 .1 ,111 1.:
PR4 - anyýPR2) + p ny2  dy, p.-. p. 1 .. . ,6 14.

dy, pros. 1 1 2.0 .111 4.0

PR8 - any4(PR4) + (PR4)any4 dyn. prog. I 3.0 .31 M .?

PR16 - any'(PRS) + (PR8)anyl aRll logic3 1•i FL 4.43 16.all togli 1.26 11.3

PR32 - any"(PR16) + (PRI6)any'G. h,,ial It 1.111 4.0
dyn. pros. 40 1. 1.47 U4.4

PRn is recognized whenever the last n inputs fail to match the dy., pros, s 30 2.0 1.13 11.16

firt n. The results of running the regular expression compiler l l 40 logic 8A.6 U30.3
on the PR series is given in Table 1. The times given in the last heuristic 4 I? 3.27 17.3

column are CPU seconds on the VAX. Areas are in X2 X 10 6, dyn. pros 6 40 1.7 3.15 2411.3

where \ is half the minimum feature size (see Mead and dyn. pr 7 12 2.0 I9 14314.5,

Conway [7]). The "heuristic" results were the best that could
be found by varying the parameters (there is another param- "
eter, not shown, which indicates the desired shape of the final
layout). It can be seen that both the heuristic method and the
dynamic programming method are quite a bit better than the
single-PLA or all-logic methods. Dynamic programming beats
the heuristic method by an amount which increases with the
expression size. Several dynamic programming results are
shown to give some idea of the tradeoff between search thor-
oughness and execution time that occurs. Sketches of the
layouts found by the compiler for PR 16 are shown in Fig. 5(a)
(heuristic) and (b) (dynamic programming). The boxes are
the individual PLA's.

The next series of expressions to be tried were the SEQ ex-
pressions, where SEQn has the form_ _ _ _

lime l(n] (a)
symbol Al(qli), bl(-l(1), a2([2]), b2N-12J), "-, an(ln]),I

bn(-RinJ)
symbol anyo i

Ill + any*(&I b2 + a2 B +~ + an any++).

These expressions signal if the input wires are not turned on
in sequence. The SEQ expressions are different from the PR
ones in that they have a large number of input wires, so that
the heuristic strategy (which does not pay attention to how
many inputs a module needs) might be expected to do poorly. i.5. L sketches for (b)
Another fact about these expressions is that the expression PRog 6. (a) Heuristic. (b) Dynamic
trees are tall and sparse. The PR expressions had rather bushy programming.
trees. Table II gives the results of using the regular expression VI. EVALUATION AND CONCLUSIONS
compiler on the SEQ expressions.

The final group of expressions is a slight modification of the It has been shown that regular expressions have a structure
SEQ group. To see what effect the depth of the tree has on the which makes them quite amenable to a "divide-and-conquer"
execution time, the BSEQ expressions were formed: they are partitioning and placement procedure which runs fairly
just copies of the SEQ expressions without the bI+any++ at quickly. Clearly, the network-of-PLA's approach is superior
the beginning, factored so that they form completely balanced to the single PLA or all-logic methods.
binary trees. For example, BSEQ4 is The program could certainly run a lot faster if substitution

((aI b2 + &2 b3) + (a3 b4l 4. a4 any++)). splits were not tried, but it has been found that these are def-
initely required. Perhaps the expressions could be parsed in

The results of compiling these expressions are also given in such a way that the children would always be about the same
Table II. It can be seen that the compiler works faster on the weight: there is some freedom allowed because. concatenation
bushy BSEQ expressions than it does on the corresponding SEQ and union are associative operators. However, the closure
expressions. This is because there are a smaller number of operators form barriers to arbitrary reparsing, so in general
possible dummy nodes which satisfy the split-ratio requirement one cannot balance the children.
in the bushy trees. The search over a range of possible dummy tree roots is
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TABLE II The regular expression compiler is still unclergoing im-
SDATA lOf SEQ AND USEtQ EXPRESSIONS provements. Currently, the ability to have numerous "output

ltpremon Weight Depth Iayout I II t Arma Tim.
Nam Method (MaX) (sou) signals" embedded in the expression is being incorporated.

ISQlS 34 is single PLA . *.6 Also, more PLA optimizations are going to be done. In par-
all Ingle .51 4.0 ticular, nonoverlapping NFA states will be detected and a
heurrlsUc 4 17 .t l n.1

dy., proo. * 17 1.7 .14 1.o group of such states can be assigned binary-encoded state
,aQ3 U 3' single PLA ... 3.5 identifiers, This should reduce the current tendency for the

all logic I,23 v.31

Worl.uc 4 is .4, 3.4 PLA's to be fairly sparse. There are plans to use the compiler
dyn. prog 0 70 t.7 .e 2 P.5 to generate much of the control logic for a VLSI chip being

33Q64 130 07 sngle PLA 3.40 d.i
all logic 33 1.7 designed.
heuristic 4 35 1.7T 7.0

dyn. proi. S 30 1,7 1.62 I1,O ACKNOWLEDGMENT
838QI4 32 ... sgle PA .27 1.4 The regular expression compiler was originally designed andall loic ,34 3,2

heurlstle 4 20 .23 1.S implemented by J. Ullman at Stanford University. The author
dyn. prog. 6 40 1.7 .213 .7 has added the dynamic programming feature and made various

.sQ31 64 6 e aslgle PLA .92 0,h
all lgice .74 ,s. other improvements.
heurlstle 4 25 .69 3.,

dyn. pros. S S5 117 .Al ..9 REFERENCES
- 1sQ64 12" 7 insgle PLA 3.39 9.5

all logIc 2.23 81.4 [I) R. Ayres, "Silicon compilation-A hierarchical use of PLA's," in Proc.
heuristic 4 30 1.1 7.6 16th Design Automat. Conf., June 1979, pp. 314-326.

dyn. prog. a 30 1.7 1.53 1.9 [2] R. W. Floyd and J. D. Ullman, "The compilation of regular expressions
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well as the heuristic method. It was found that one had to try June 1979, pp. 1-10.
the five best dummy tree roots before the full dynamic pro- [71 C. Mead and L. Conway, Introduction to VLSI Systems. Reading,

MA: Addison-Wesley, 1980.gramming layout would be found for SEQ32. The execution [8] A. Mukhopadhyay, "Hardware algorithms for nonnumeric computa-
times using the best-dummy-only modification were quite close tion," IEEE Trans. Comput., vol. C-28, pp. 384-393, June 1979.

to those of the heuristic method, so perhaps this is the most 191 J. P. Roth, "Programmed logic array optimization," IEEE Trans.

useful method of all, for small to medium sized expressions, Comput., vol. C-27, pp. 174-176, Feb. 1978.
(10) D. G. Schweikert and B. W. Kernighan, "A proper model for the par-

The dynamic programming method requires keeping a titioning of electric circuits," in Proc. 8th Design Automat. Workshop,

number of "best" layouts for expressions, in each of a number June 1972, pp. 56-62.

of different aspect ratio ranges. Varying the number of these [Ill D. P. Siewiorek and M. R. Barbacci, "The CMU RT-CAD system-An
innovative approach to computer aided design," in Proc. Fall Joint

ranges has some effect on the ability of the compiler to find Comput. Conf., AFIPS, vol. 45, 1976.

good layouts. Originally, three ranges were used. This seemed [12] J. D. Williams, "STICKS--A graphical compiler for high level LSI

to work, but when the compiler was changed to keep layouts [ design," in Proc. Nat. Comput. Conf., 1978, pp. 289-295.
1131 G. Zimmerman, "Cost performance analysis and optimization of highly

for six ranges, the results were quite a lot better-at least for parallel computer structures: First results of a structured top-down

the larger expressions. design method," presented at 4th Ini. Symp. on Comput. Hardware

To sum up, each of the capabilities of the regular expression Description Languages, Oct. 1979.

compiler adds incrementally to the quality of the layout, at a
cost of extra execution time.

The work described in this paper has some resemblance to
previous work on graph theoretic approaches to partitioning
101, but the problem is somewhat more tractable when trees Howard W. Trickey (S'79) received the BASc.

degree in engineering science and the M.ASc. de-
are involved. Also, the idea of doing the placement by recur- gree in electrical engineering from the University

sively splitting the plane into halves has been used before [6]. of Toronto, Toronto, Ont., Canada.
Not much has been done on automatically choosing a network Currently, he is a graduate student in the De-

partment of Cormputer Science, Stanford Univer-
of PLA's to implement a sequential circuit, although there has sity, Stanford, CA. His technical interests include

O been some work done on optimizing single PLA's (9]. A circuit VLSI design automation and complexity theory,
realization using a network of PLA's is given in [I], but the analysis of algorithms, and programming lan-

e mguage design and implementation.
user must specify the splits with a hierarchical circuit defini- Mr. Trickey is a student member of the Associ-
tion. ation for Computing Machinery.



A REGULAR EXPRESSION COMPILER'

by Howard W, Trickey and Jeffrey D. Ullman

Stanford University

making heavy use of library cells, with various de-
Abstract grees of adaptability8, or by using simplified layout

diagrams14. At the moment, our compiler ignores
The regular expression notation can be. used this aspect of chip design. It is used only for generat-

to specify some portions, of a VLSI chip. These ing the controlling logic portion.
specifications are less procedural than the usual types
of hardware languages, and this has advantages Most approaches to control specification have
such as conciseness and understandability. We have a very procedural flavor. For example, actual pro-
implemented a compiler that takes a regular expres. grams for a register. transfer level machine can be
sion as input and produces a layout for a circuit used to generate controlling logic' 1". A related ,..p-
that recognizes the expression. "The input language proach is to give a finite state machine description
is defined, and a portion of a computer controller is that can be compiled into microcode$. One of. the
given to show bow regular expressions can be used. lessons of programming language compiler technol-
We conclude by showing how the structure of regular ogy is that there are advantages to be gained by using
expressions is an advantage when it comes to generat- a data-driven controller. Parsers and lexical scanners
ing layouts. can easily be generated from succinct grammars1 .

Besides succinctness, these descriptions also have the
advantage that they are static - one doesn't have to
step through a program, remembering intermediate

Introduction states, to understand what will happen. There is a
school of thought that advocates organizing all pro-

A silicon compiler is a program that takes a gramming tasks it. a data-driven manner 7.
"high level" description of an integrated circuit and
produces a layout for that circuit',5,1 2 ,14 ,15 . The Our Regular Ezpression Compiler generates a
reasons for using high level circuit descriptions are layout for data-driven controller. Its input is a
similar to those for using high level programming regular expression describing the input patterns ex-
languages: the elimination of low-level errors, as well pected, with embedded symbols that tell where out-
as the ease of writing, understanding, modifying, and puts should be signaled. We allow more than one
verifying correctness of the descriptions. Overali, the. portion of a regular expression to be "active" at the
use of silicon compilers is expected to help alleviate same time. This makes it much easier to describe
the high cost of VLSI design. certain patterns; it can also be useful for allowing

things to happen in parallel, with synchronization.
Broadly, there are two aspects to a circuit With microcode there is usually only one locus of

design. First, there is the data path: the registers, control, so that parallelism either has to be simulated
buses, adders, and other blocks for manipulating (by interleaving), or multiple independent controllers
data. Then there is the logic used to control the data must be u led.
manipulation, which may be a few simple gates or a
complicated microcode program. The data path part
of the chip can be given a high level description by The Input Language

Work supported by NSERC, NSF grant MCS-812g07, and A regular expression is a notation for repre-
DARPA contract MDA 903-80.,-0107. senting a set of strings of symbols. It is defined recur-



sively as follows: "don't care." Note that any will be recognized at the
a same time as zero or one; there is no requirement

e The symbol is the moat basic kind of regular that the wire combinations for different symbols be
expression. In the application to circuits, disjoint.

the occurrence of a symbol means that the

input wires must be zero or one, according The regular expression itself follows the decla-
to the symbol definition, ration. This expression givces all strings of symbols

where either (a) the first symbol differs from the
If E and F are regular expressions, then so are second-from-last symbol, or (b) the second symbol

the following: differs from the last symbol. This expression will be

"* The union, E + F, meaning either E or F. referred to as PR2.

"* The concatenation, E • F (or simply EF), The controller is a synchronous machine, act-

meaning E followed by F. ing as a pattern recognizer. The successive symbols
of a string must appear in successive clock cycles for

"* The closure, E% meaning zero or more oc- the pattern to be recognized. Whenever the symbols
currences of E. seen at preceding cycles form one of the complete

"* The positive closure, E++, meaning one or strings specified by an expression, an output signal

more occurrences of E. is given on a "recognized" wire for the expression.

"* The optional occurrence, E?, meaning zer'o Usually one wants to have a number of different

or one occurrence of E. output wires, signalled at various points during the
recognition of a regular expression. This is done by

" (E), where parentheses are used for group- first giving a declaration of the form output U,V
ing. Unless parentheses are used, the (which declares U and V to be output symbols), and
unary operators have precedence over the then embedding the output symbols at the desired
binary operators, and concatenation has points in the expression. For example, the regular
precedence over union. expression

The use of regular expressions to specify con- a b U c d V
trollers is perhaps best seen by means of an example.
The following is the complete input file required by where U and V are output symbols and the rest are
the regular expression compiler for a small example: input symbols says that after seeing a then b, emit

line data (2] output signal U; if the next two symbols are c then
d, also emit V. No input cycle is spent expecting an

symbol zero (dt4[1]. -data [21). "input" U.

one(-data (13 ,dataE23), anyO"

* The regular expression compiler also has a
any (one any* zero, + zero any* one) + subexpression capability. One can declare some-

(one any* zero + zero any* one) any thing like subexp Wait = notready* ready, and
then use Wait in another expression, as an abbrevia-
tion.

The line declaration gives the wires that are

input to the circuit. A line name can be subscripted Regular expressions can specify highly paral-
(with [..] ), as data is, to represent more than one lel patterns such as PR2, or they can be used in a
wire. One can declare any number of lines. The style that looks more like microcode. The following
symbol declaration gives the names of the symbols expression is a partial specification for a computer
that will occur in the regular expression, with the controller.
values of the input wires which identify a symbol /. The "main" expression:
given in parentheses after its name. Here there are Instruction fetch-execute loop 0/
three symbols: zero, recognized when datail] is a (InstructionFetch SourceFetch DestPetch Execute)e
logical "1" and data [2] is a logical "0" (indicated by
the "-" in front of data[2]); one, recognized when
the data wires are reversed; and any, which doesn't L, SourcePetch s tbexpre.aonr
specify either "I" or "0" for the data wires, so it is a



substp Sourc.e~tch use a module to recognize each.symbol of the ex-
aregdlrect (SR-T0-BUS SOURCE-FROM-BUB) pression, and to combine the modules according to

(sreglndtrect (SR-TO-BUS MAR-PROM-BUS R•ADSTART) the structure of the expression, using appropriate
(srogautoilncresent (SR-TO-BUS ALU-FIROMD-U logic gates. The methods of Foster and Kuug 4

VAR-FROM-DUS RBADSTART) and Mukhopadhyay1 ° lead to layouts slmila to
any (ALU-ADD ALU-CARATIN) this. We use an intermediate approach, where the
any (ALU-TO-BUS SR-FROMD-US) basic modules are PLA's, each of which is respon-

* orogindexed (PC-TO-BUS ALU-FROM-BU8 sible for some subexpression of the total expres-
MR-FROM-BUS READSTART) sion. Those module. are combined using logic and

any (ALU-ADD ALU-CARRYIN) a "substitution" operation that allows one PLA to
any (ALU-TO-BUS PC-FROM-BUI) handle parts of the expression tree that have sub-
Readlalt MDR-TO-BUS ALU-FROM-BUB expressions removed. This turns out to-be better
any (SR-TO-BUS ALU-ADD) than either of the extreme approaches, especially
any (ALU-TO-BUS MARFROM-BUS READSTAIT) when dynamic programming is used to choose the

) best possible division into modules (see Trickey"3 for
(indirect Readlftt MDR-TO-BUS details).

MLAR-FROM-BUS REABSTART)?

) Readfalt MDR-TO-BUS SOURCE-FROM-BUS. One might wonder why we implement regular
expressions as nondeterministic machines, rather

euberp Readfait a readnotdone* readdone than first converting them to deterministic machines,
for which there exist standard reduction techniques.

* . . /s other subezpreualons */ One reason is that the regular expression input ex-
poses some important structure of the problem for
which we are designing a circuit. We exploit this

The lower-case symbols are inputs, the upper- structure, for example, when we break the expres-
casesymbols are outputs, and the mixed-case sym- sion tree of a regular expression into subexpres-
bols are subexpressions. The computer being specifi- sions, each of which interacts with the others in very
ed has an architecture similar to the PDP-11. The limited ways. If we converted to a deterministic finite
hardware being controlled has a single bus at- automaton, it would be a large combinatorial prob-
tached to general registers, the ALU, SOURCE and lena to recover a partitioning of the states that was
DEST registers to hold instruction operands, and the as good as what we can discover easily from the ex-
memory address and memory data registers (MAR, pression.
MDR). The part of the specification reproduced
above shows how the SOURCE register can be filled, Another opportunity to use the structure of the
according to the addressing mode. Most cycles start input to the compiler comes when w! do state as-
with a test of inputs that have been set according to signmcnt for the deterministic finite automaton that
the current instruction. Those that need no tests use recognizes a given subexpression. We start with the
a don't care input (any). nondeterministic finite automaton's states. If we

simply identified each deterministic state with a sub-
set of nondeterministic states, and identified each bit

Layout of Regular Expression Recognizers of the state code for deterministic states with a non-
deterministic state, we would often have a poor en-

An advantage of using regular expressions to coding, since most subsets of the nondeterministic
specify controllers is that their structure can be used states would not be accessible, and the state encod-
as the basis for generating good layouts. It is quite ing for the deterministic machine would have many
easy to give a nondetcrministic finite automaton more bits than is reasonable.
that recognizes a regular expression, and to use a
Programmable Logic Array (PLA) to simulate that Fortunately, there is a better way to exploit the
automaton. Each state can be represented by a structure of the nondeterministic machine. We have
dynamic register whose value is calculated by the developed a technique where we identify groups of
PLA using the inputs and the current state values nondeterministic states that do not conflict, in the
(which are red back from the registers). Details of sense that in any group at most one state can be ac-
this method are given by Floyd and Ullnan3 . tive at any time. Then the states in each group can

h pbe binary encoded, essentially forming a dctcrmiuls-Another possible implementation method is to



tie matchiito for h groupo.r This ninans that doter.. (21 IL Ayres, "Silicon Compilation - A Ilierarchi-
111111tk40 fi xllroiaiollo do, not suffor, silce all tile states chl Use or PLAs." 1060 Design Automation

will belong to oae group, but at, tile same time we Con/. Proceedings, pp. 314-325, June 1070.
can halidle higlhly parallel expressions (tLose where
mIll sl• seta or the mcoeudeterminlitic statesa at. (3- It.W. Floyd, and J.D. Ullman. "The Compia-
e ist~blh), TIhere are nxamnple., including one we shall Lion of Rtegul-r Expressions into Integratedntioniit belw, where we can achieve good encodonsll Circuits." Tech, Rep. STAN-CS-80-798, Stan-for deterministic mwaerhiee o many more states than ford Computer Science Dept, April 1980.
stindard technitmios could deal with, [4) M.J. Foster, and ILT, Kung. "PRfA, Program-

As anm example of our techniqum, we have made niable Building Blocks for Recognizing Regular

nievAiurementa oil the Pit. series of expressions (Plit Languages in VLSI." Unpublished memorandum,

detecta when tile last n inputa differ from tie first Dept. of Computer Science, Carnegie-Mellon,

i, with "don't care" permitted). For n11, both 1981.

the Pingle-P'LA (naive encoding) and the module- [51 J.P. Gray. "Introduction to Silicon Compila-
per-symbol approaches yield layout areas of about Lion." .161h Design Automation Con/. Proceed.
I MegaX1. Our mixed approach combined with bi. ings., pp. 305-300, June 1079.
Ilary encoding gies a layout area of .35 MegaX1.
A single i'LA designed by hand, using beat entod- 161 J. Hlennessy. "SLIM: A Simulation and
ings we could think of, had an area of .42 MegaX3 . Implemontation Language for VLSI Microcode."
Interestingly, our compiler will generate the same Lambda, pp, 20-28, Second Quarter, 1981.
VI.A if its parameters are fixed to force a single PLA. 17) M Jickson. Principles of Program Design.
A deterministic finite state automaton to dolve this Ac]deM, ic Press, 1975.problem woold have about 21" states, so it is clear

that methods using deterministic machines could not (8] D. Johannsen. "Bristle Blocks, A Silicon

he applied here, Compiler." 16h Design Automation Coal.
Proceedings, pp. 310-313, June 1979.

C( 110] A. Mukhopadhyay. "Hardware Algorithms for
Non-numeric Computation." IEEE Transact-

bions on Computers, C-28, No. 6, pp, 384-393,
We believe that thle non-procedurality and suc-Jue19. June 1979,

el, !tness of regular expression specifications for con-
trollers is a definite advantage. They are easy to [121 DP. Siewiorek, M.R. Barbacci. "The CMU
write, and they lend themselves to good Inmplemen- RT-CAD System - An Innovative Approach
Lations, A key property or regular expressions is that to Computer Aided Design." APIPS Fall Joint
they expose the structure or tile controllers. Thin Computer Conferenee, Vol. 45, 1070.
structure, often buried in lower-level notations, CAn
be exploited to find efficacious state assignments and 113 t.W. Trickey. "Good Layouts for Pattern

partitions into PhA's, There are brute force methods Recognisers." Tech. Rep. STAN-CS-81-871,

to do thits for deterministic machinem, but they break Stanford Computer Science Dept., 1981.
down long before tile regular expression methods. (14) J.D. Williams. "STICKS -- A Graphical

We don't claim that we have iI! yet a complete Compiler for High Level LSI Design." National

tet of facilities for creating real conu.,illers .- we are Computer Conl. Proceedings, pp, 2P0-295, 1978.
cuirretitly working with some large examples to see [151 0. Zimmerman. "Cost Performance AnalyrA.
what else can be automated. A further possible direc- and Optimization of Highly Parallel Computer
Lion is to combine our regular expression controllers Structures: First Results of a Structured Top-
with a data path design system. Down Design Method." 4th International Symp,

on Computer Hardware Description Language.,
October 1079.
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COMBINING STATE MACHINES AND REGULAR EXPRE~SSIONS

FOR AUTOMATIC SYNTHIESIS OF VLSI CIRCUITSt

Jeffrey D. Ullman

Stan ford Univ.

ABSTRACT

We discuss a system for translating regular expressions into logic equations or PLA's, with particular

attontioni to how we can obtain both the benefits of regular expressions and state machinesH as input

languages. An extended example of the method is given, and the results of our approach is compared

with hand design; in this example we use less than twice the area of a hiand-desigiied, machine

optimized PLA.

1. The Regular Expression Compiler

A collection of routines have been written by 11. Trickey and J. Ullman to translate regular expressions into

circuits. At present, we first compile regular expressions into a language that describes nondeterministic

finite automata (NFA's). These NFA's are then compiled into either PLA's or S. C. Johnson's Igen logic

language.

A description or the regular exprestsion language appears in [TUJ. The language is quite standard, with

perhaps the following exceptions.

1. Input siymbols are not "disjoint," in the sense that at any time only one can be seen on thle input.

Rather, input symbols are defined in terms or some set of wires being on or off. Since not all wires muat

be specified for each symbol, there is the possibility that two or more symbols are on at a time. This

has the consequence that apparently de~.erminiatlc processes can In fact have nondeterininisin In them.

2. Output signals are represented by ordinary- looking symbols in regular expressions. When the input is

such that an output symbol is reached in the expression, we P.rnit that Aignal, and proceed to recognize

any continuation of the expreasion that- the Input allows us to recognize.

Example It In Fig. 1 we ijee an input to the regular expression compiler that formns a runnling example

for this report. Without dealing now with tile issue of what this program does, let us observe a few salient

features. Tile first line Says that there are seven Input wircs, x[jl, ... ,xj7]. Next comec thle deflnitions of the

input symbols. For example, we see signal iraO on the Input whenever the llrmt wire is on andl the second off.

Note, for example, that, we could ace symbol inO and also acka, If the first three wires were 1, 0, and 1.

t %nrk supIporuthl by I)ARVIA comtract MI)A 903, S0.C-0107.



Following this come the declaration or output signals, and then three subexpressions, son.ein, which is

recognized when either inO or inl is seen, waitin which is recognized when neither input is seen, or both

wires zil] and x[2] are on swmultaneously (which represents a "bad input," the symbol badin), and alIbut0l,

which stands for the union of all signals but inO and inl. After the declaration portion is a semicolon and

the expression itself.

As an example of how the expression is to be interpreted, consider the seventh line of the expression,

beginning stateia.... It says that if we get a signal telling us we are in state a, and then receive any number

of symbol noacka (noacka* means "any number of noacka's"), we emit the signal OUTA. We regard T,[31

as a wire that "acknowledges" the fact that signal OUTA was received, so symbol noacka, defined by x[3]

being off, is seen until the acka symbol, x[3] - 1, is seen. In effect, we emit the output signal OUTA until

it is acknowledged.

When OUTA is acknowledged by acka appearing on the input, the process of recognizing the expression

proceeds to waitin*, which is recognized for as long as the first two wires remain at 0, or both become I

simultaneously (a bad input). Then, when inO or inl is seen, a signal to change to state b or c is made. If

any of the symbols represented by aUbut0l is received after the acka, an error is declared. 0

11. Combining States and Expressions 0

The motivation for using regular expressions as a source language is twofold. First, they are a succinct and

nonprocedural description of a large class of sequential processes. Titus they can provide some simplification

in the design process for the right problem. Second, being structured descriptionts of patterns, they are

appropriate for proofs of correctness, and even if a formal proof' is not attempted, they provide useful

iWtuition that helps the reader convince himself of the correctness of the expression. In comparison, transition

functions for automata are analogous to programs with goto's; they are inherently hard to understand and

verify, either formally or intuitively.

On the other side of the coin, there are distinct advantages to process descriptions involving states.

Often, it is natural to view a process as being in one of several states; for example, counting is especially

easy wheni you have stateu available and very hard to (to with regular expressions. It Is the purpose of this

report to descibe a simple modification to the regular expression compiler that allows us, in effect, to declare

states and then define transitions among states in regular expression terms. As a result, we get the beat.

of both worlds; states are available when they are more succinct than regular expressions or when tl.y

help tis organize our design, and regular expressions are available when patterns of symnboii are useful as a

description of events.

2



line x[171
symbol lnO(xill -x[21)

lnl(x[21 -xil))
badin(xi1J x(21)
aeka(xf 3))
ackb(x[41)
ackc(x[51)
atfttela(x[6j x(71)
*statcib(x[6J -x(71)'
stateic(.x[6) x(7])
start(-xlSJ -x(71)
noin(-x[1I .x(21)
noacca.(.x[31)
noackb(-x[41)
noackc(.x[5])

output OUTA
OUTB
OUTC
stateos,
statcob
statcoc
ERROR

subexp, someln=-InO + inIi + bad'In
subexp waitin=noin + badin
uubexp allbuLO1-acka + ackb + acke +~ budin

start wai~n*
alibut~l. ERROR +
Ino stateos, +
In 1 flttLeob

+
state!& nonckr* OUTA(

(sckb+&cke+somein) ERROR +
acka watitn' (

allbutOl ERROR. +
InU stateob +
in I tateoc

s~atelb noackb* OUTB(
(scks+nckc+somcin) ERROR +
ackb vwalitn' (

allbutO1 ERROR +
mnO state"c +
In ststeoA

stat~elc no&ackr* QUTO
(aetka+arkb+sumcin) Eli IOrt +
&eke w*'itln* (

nilbut0l ERRIOR +
1110 stateoo +
lIi I tatcob

Fig. 1. Input to regular expression compiler.
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To introduce sLaLtes into the regular expression language, we make the following modifications.

1. The names stateiX for any X are input symbols that represent the fact that we have just entered state

X. Symbol start serves as the initial state. To indicate that these states are disjoint, i.e., we can be

in only one of them at a time, we can use imaginary wires, such as x[61 and z[7] in Fig. 1, to make it

appear to the compiler that at most one of these input symbols can be present on the input at any time.

Of course, if the states were not disjoint in this sense, we could express the legal subsets by another

combination of dummy wires.

2. Output symbols stateoX for any X are used as goto's. If we emit the symbol atatcoX, we shall in effect

turn on the input symbol stateiX and enter state X.

The complete regular expression consists of the sum of expressions that begin start and itateiX for the

various X's. The portion of the regular expression associated with each state is recognized, if possible, each

time we enter that state, and we make whatever outputs the regular expression tells us to make in response

to what inputs we see.

After the regular expression compiler converts the expression into a nondeterministic finite automnatun,

an edit script is used to identify the input symbol stateiX with the output symbol stateoX and make certain

other changes so things work properly.

Example 2: A case in point is the problem to which the regular expression program of FE,. I is a solution.

This program implements the transmitter from [AUY] that sends bits reliably over a channel that hlw a high

probability of losing bits, but does not change 0's into l's or vice-versa. This view of a channel is plausible If

we assume that any noise or other error causes the system to fail to detect a bit. This strategy, of a"sunling

no signal whenever something goes wrong, is modeled after the Datakit protocol IF).

The general idea is that when the transmitter is given a bit to send, it .,nds one of three signals

OUTA, OUTB, or OUTC, chosen by a me.thod to be described. It keeps sending the signal until it receives

an acknowledgement of the signal sent. Then, it atops sending the signal unktll the next input, 0 or 1, is

received, whereupon it sends the next signal (in the ntnse that c follows b, which follows a, which follows c)

if 0 is input, and it sends the previotis signal in this cyclic order if I ii input.

The purpose or Utis arramngemlment is so that whenever the transsmitter sendni a new input, it changes the

signal sent; that change serves to acknowledge the acknowledgement. If we did mwut always make a signal

change, the receiver could not tell, say upon receiving two O's, whetber these were two different inputs, or

tihe acknowledgemont of the first had been lost, and the second 0 was a retransmrisnion of the first.

Another way to look at the signal selection algorithm, is that we count one for an input 0 and two for

an inIput l, and tranamamit OUTA, OUTY, or OUT) depending on whkether thie siom of inputs rmccived to

4



far is congruent to 1, 2, or 0, modulo 3. Counting, even counting modulo 3, is very difficult to "xpress in

the regular expression language. Thus it is natural to introduce three states, a, b, and c, that are entered

whenever we receive an input that makes this running modular sum 1, 2, or 0, respectively.

We already discussed briefly in Example 1 what happens in one or these states, say a. After receiving the

stateia signal to say we have entered state a, we emit OUTA for as long as the input matches noacka*, that

is, the acka acknowledgement is not received. A sequence of noacka's can be followed by either of two events

that cause special outputs. First, the acka signal can be received, and then, after any sequence of waitit's,

i.e., no input, an inO or int triggers a signal that causes a jump to another state, b or c, respectively. After

receiving arka, any input but inO or inl causes an error signal. Note that allbutOl and waitin can be seen

at the same tine, so we can continue waiting for a good input even while signaling when errors occur.

Now let us return to the point in the expression where we are recognizing noacka* and waiting for acka.

At the same time we are waiting for arka, if we receive ackb, ackc, or somein, we have an error condition;

in the first two cases, the wrong acknowledgement was received, in the last, we received either a bad input,

or a good inpuk' before we are ready to transmit it. In this case, we emit the output signal ERROR. Note

that all of these error conditions are seen on the input at the same time noacka is seen, so emitting ERROR

does not. prevent us from continuing to see noacka* and eventually to see acka and another input. However,

inputs received erroneously do not cause a change of state, because we cannot reach a term like inO sotatob

in the regular expression until after the acka has been received.

The portions of the expression following stateib and stateic are analogous to what we have described.

The portion following start differs only in that we are not.waiting for an acknowledgement, and if any is

received it is an error.

The result of compiling Fig. I is shown in Fig. 2. This figure illustrates the NFA language used. Each

type of statement begins with a unique letter. For example, D is a declaration of an input symbol, much

like in the regular expression compiler. However, note that the input symbol stateiX and the output symbol

statcuX have both become stateX, and this input symbol is declared (in lines 6-8, e.g.) to be present when

the wire of the same name is on; that wire is the corresponding output signal.

The letLer N indicates the name of the NIFA, and F indicates Lite namie of Lite final signal, if any (there

is nione in Fig. 2), and the states that cause the final signal to be emitted. Letter I introduces the name of

the initial signal, init in this case, and a list of the initial states, st2, st3, and so on.

A state is declared by the letter S, followed by the state name, and the input symbol that it recognizes.

The NFA langauge is restricted in that each state recognizes only one input symbol, Hlowever, this restriction

is ,ot lhtthersoine for NFA's that are output by the regular expression compilhr, and tim gwieral, we can create

5



D IiiO ( mO .Ini)
ID In! -InO In!)
D badln ( mO In!)
D acka ache)
D ackb (ackbq)
D &eke &ekc)
D astcatm (states)
D stateb (stateb)
D) statec (Statec)
D noln ( 4mO .Ini)
D noaeka -ache)
D noackb (.eck6)
0 noacke (-&cke)
N4 nra!
F ;
I Init; st2 stS Mt stS AS6 st9 stU!
S st2 noln
T st2 st3 Mt sL5 s46 st9 Atll
S a3 badin
T st2 s3 st4 st5stC AtS st, All!
8 M4 acka
TV stS
S asL ackb

S stS ache

S st7 0 statb
S stS 0 error
S s6 InO
T at10
S atlO 0 states
S At11 In!

S st14 noaeha
T A5S 90 Wt4 stiS 017 sUB ut16 .122
S 0,15 0 outm,
S stl6 badln
TV at' st lit tS *tostl at!IS .12t
S st.17 badin-
T aWt

T atiS$

S sting InI

8 A26 badin
TV st4 st5 stS At? st20 st27 .121 4L3
8 st2l statee X
T t4 st5 vtI7 ntIS aLIg st25 £1.2l AM3
S 422 ache
T M4 KL5S W647 *L23 4L24 .130 @032
8 4t23 noln
Tr z4 At5 mtS stl7 s&23 434 430 A132
S 4L24 badin
T M4 s5 AtS &07? 423 @t24 sL30 A32S

Fig. 2a(). Deginn~rng of NFA dcwriptlonm



8 AM.2 ackc
T .1.4 &L,5 Ast,8 .1. I11 I at16 4129
S A126 noiseke
T M1. .15 .1.17 .1.19 .1.11 .. 28 &LIS6 AST
8 .1.27 noln
T .1.4 .1.5 *16 st17 @%20 .1.27 .1.31 4133
S AM.2 akb
T .1.4 .1.5 AS. st17 .1.20 .1.27 .1.31 .1.
8 .1.20 noln
T 414 A15 AS At AI. 11 .1.1 .1.20
8 .st30 InO
T .1.7
S $0.1 mno
T .1.12
8 A132 mln
T .1.12
8 .1.33 Inl
T .1.10
S .1.34 stateb X
T .1.4 .1.6 aL17 .1.1U1.1 .1.28 AM.3 .1.36
8 AM.3 noackb
T' s14 .1.6 4117 WS.1 .. 19 .1.28 AM.3 A136
S A136 0 Ou1.b
S 90.7 0 ou1.c

C .1.3; .1 &4 . &L5 .1.6 AS. .1.9 .111

C 51.; .1. .1.6 .18 tS s 1 All1s16 .1.17 .1.13 WO.1 .12 423 .1.24 .1.25 .s&26 .1.27 .1.28 .1.29 AM.3 .1.31 .12 .1.33
st35 .1.36 .137

C .1.5; .1. .18 .1.9 .. 11 .st14 .1.15 .1.16 .1.17 .1.15 419 .1.20 .122 .1.23 4124 A125 .1.26 A27 .. 29 .st30 .431
.1.32 .1.33 .1.37

C .1.6; .1.8 .1.0 Wl A114 .1.15 AN.1 W7.' WS.1 All .1.20.122 .123 .1.24 #0.7 .18.129 AN 1.30 .1.31 &L32 A133 .A35 AM.3
C .1.7; .1.8
C itS; .1.9 .1.10 .1.1 .12 st.14 AN.1 .118 .1.17 sis tli .110.120 .2 .1.23 .1.24 .. 25 .#426 .t27 .1.2 84.29

st.30 .1.31 .132 .1.33 .1.35 .AM3 4137

C .1.13; .1.21 .1.34
C .1.14; .1.15 m1.17 .1.19 .119 .1.22
C .1.15; A1.1 .. 13 .1.19 .122
C at1I18; .1.2o
C .1.17; s.18 .1.19 .420 .1.22 .1.23 .1.24 .1.25 .1.26 .127 An2 .1.M .1.31 4132 st,33 s&.35 A131 .1.37
C .1.18; .1.19 .122 .1.25 .1.26 .1.28 .1.35 .136 .1.37
C stdO; .1.22 .1.25 .1.26 .1.28 .1.5 .1.35 .137
C st.20; .1.27 .1.3 .133
C .. 21; .1.44
C .1.23; 01.4 .1.30 .432
C .1.24; .1.0 .1.32
C .1.5, .1.26 .1.37
C .A26, .1.37
C AV.2; .. 31 1.33
C 1.28; .1.35 .1.36
C A130; .1.2
C .1.31; A133
C A135; .1.36

Fit. 2(b). End of NFA doscription.
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several states with the same predecessors to simulate one state with transitions on several inputs.t

An 0 preceding the symbol associated with a state means that the symbol is an output symbol, rather

than an input symbol. The letter X following the symbol, as in at13, means that the state is external; it is

always on and waiting to see its input symbol.$ It is exactly the states of the NFA that represent the states

used in the regular expression specification that become external states of the NFA.

All states are followed by the letter T and a list of their transitions, that is, their successors. Finally

there are conflict statements introduced by the letter C. The state following the C is declared to conflict with

all the states after the semicolon. Conflicting states are those that can be on at the same time, a result not

only of the nondeterminism butof the fact that several input symbols may be recognizable at once. Conflicts

among states are taken into account when we find a coding of the NFA's states for an implementation. 0]

M. Logic Generation

The NFA is converted to the logic language Lgen by an algorithm described in [U]. Briefly, the nondeter-

ministic states inust'rcceive representations that will enable us to identify that each state is on, regardless of

what other states are also on at the same time. Here is where knowing the state conflicts may help, because

when state i is on, that fact can only be obscured by states that conflict with i also being on. For example,

if the NFA were really deterministic, there would be no conflicts, and we could use a binary coding of the

states.

One way to code states is to give each a private signal. Then we can tell the state is on independent of

any other states. The actual approach taken by the logic generator used is slightly more sophisticated. It

attempts to identify groups, which are sets of mutually nonconflicting states.ft Within a group, binary codes

are selected so that any conflicting states from other groups will receive the same code. To do so, a minimal

number of states that would make this coding impossible are expelled from groups and given private signals.

Groups of a single state are similarly given private signals.

The result is that in addition to private signals, there are code bits and group bits. A state without a

private signal is recognized by the bit of its group being on, and the code bits being on or off as appropriate

t [IT devrribes a more general N1*A language that allows, multiple transitions, t-transltions, and a variety or options not
available in the NFA language described here.
$ There is another kind of state like external states, that does not appear in Fig. 2. These states, called advance states and
dcsigaated by A, are like external states, but when they aee their input, they enable their successors to recognize their own
inputt at the same time unit. Advance states are needed to implement correctly networks of NVA's that together recognise
one lArgc regular exprestldon. Large expressions need to be broken into pieces Inmplemented by separate NFA's for two reasons.
First, processing large expressions is too time consuming, especially minlimising the statcs of the NFA and computing conflicts.
Second, the circuits inmplementing the NPA's such as PLA's or Weinberger arrays, will be too large and badly shaped ir the
NFA has too many otates.
tt Ilowever, berore looking at cpnflictt, states that have exactly the same predecessors (and therefore are really Just different
transitions 'rom the "same" state) are combined Into one.
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o.12 - -.inI * -In * emL2
ost3 am Ini * mnO * est2
ost4 -acka * est4
v.15 -ackb * est5
v.18 &eake * v.16
v.19 -.InI * mnO * emt9
oxml I - 101 * -'mnO 0 Cat.o

ast14 ,am sks * eel * "ee2 .se
ost17 - rl * mnO * estll
collS - -.in I * mnO * estIS
ost19 - mlt * -dm0 * cullS
ost22 meacka * eel * -.ce2 *-ced
v.1L16 wx In * InO * -.cel * ce2 * -'ce3
ost29 - -.InI * -dm0 * -'cel * ce2 * -,c.3
ont20 - Inl * InO * eel * ce2 * -ice3
oat27 -'Inl -'InO * eel * ce2 * "e
ou131 -ini I 1m 4n *cel * re2 * -'ceS
os133 - ml * -'mO * eel * v.2 * -'cel
o.121 I statec
o*125 &eake * -'eel * -ce2 * v.3
v.126 -- aekc * -'cc Ia -'ce2 * ce3
v.123 - -in * -'1G * ccl I -'ce2 * @
v.124- Ird * InG * eel * -'ce2 * ce3
oa3O -. ini * inO * eel * -'ce2 * ceS
ost32 -iril * 'inO * cel * -ce2 * ce3
v.128 -ackb * -'eel * ce2 * ce3
v.134 statab
os135 -'ackb a -eecl * ee2 * ce3
ent2 -LAST NO1 CLEAR globAlinit + mInt
NO1 - v.12 + oist
est4 - LAST r.14 CLEAR globalinit + mu~
W4l - os12 + v.13 + oui,22 + ost16 + v.129 + ost20 + v.127 + v.121 + v.125 + v.126 + v.123 + os124 +

*ost28 + os34 + ost35
eesO = LAST NO1 CLEAR globalinIt + lull
fat5 - os12 + oisQ + ost13 + ost14 + v.122 + o.116 + oeL29 + ost20 + os127 + v.121 + v.125 + v.126 +I

v.123 + v.124 + os128
W6 - LAST fatO CLEAR globalinit + Wtl
NO1 = o12 + o413 + v.113 + v.t14 + v.122 + ost16 *:. ostIV -e vv1aC + v.127 + v.125 + ost23 + ost24 +

ost2S + v.134 + v.135
est LAST NO CLEAR globall nil + lull
NOl - o12 + v.13 + ox116 + v.129 + o.125
estl7 - LAST rs', CLEAR globallull
Fst17 -v.113 + os.114 + os122 + ost20 + -- 'I + v.126 + '.23 + v.124 + v.128 + 05134 + o.353
cellS -LAST foLIS CLEAR globallull
NUS1 - v.113 + ost14 + v.121 + v.126 + v.114 + o4135
error - v.13 + v.14 +* v.15 + v.16 + ost17 + os118 + v.119 + v.111
sataeb - oelll+ o.130
states -v.19 + ost33
slatec - v.131 + os132
outa - os13 + ost14
utit - o~i121 + ost26
notb - os134 + omM3
ccl LAST cr1 CLIUAI globslmnil
cr1 ost13 + ost14 + os122 + ost20 + v.127 + v.123 + os124 + v.125
cc2 LAST el2 CLEAR globailmin
cr2 osti6 + ost29 + ost20 + v.127 + v.125 + v.125 + v.1,34 + os135
ce3 LAST cM CLUAR globallnlb
cr3 = v22 + ost21 + ost26 + os123 + ost24 + v.134 + v.135

Fl5 . 3. Logic implemcnting commuunication protocol.



to its code.

Example Wa In Fig. 3 we see the output of the NFA-to-logic compiler, with certain header information,

indicating clocking and the borders on which signals appear, omitted. Because it turns out that there is only

one nontrivial group, and that group does not have exactly a power of two states, we were able to eliminate

the group bit, and, by not using the all-zeros code for any state in the group, detect the presence of a state

in the group by one or more of the code bits being on.

The overall organization of the logic in Fig. 3 is not unlike that of a PLA. The variablds are in three

groups, designated by the letters e, f, and o. The first group, e, corresponds to columns in the and-plane of

a PLA and represents the fact that a certain state is "enabled"; if its input symbol is now seen it can enable

its successors for the next input cycle. Some states have private enablers, like est2 for state 2. Other states

are coded, and in Fig. 3 there are three coded enabler variables eel, ce2, and ce3, combinations of which

represent the enablers for various states. Note that not every state has an enabler, either private or coded.

States without enablers have the same entering transitions as some other state that does have an enabler,

and the same enabler serves for both.

The f group of variables are "feedback"; they correspond to columns in the or-plane. State fX at one

time unit becomes eX at the next "iwe unit by means of Igen statements such as

eat2 = LAST fat2 CLEAR globalinit + init

which says that state 2 is enabled either by the initial signal init, or by fet2 being on at the previous time

unit. The output signals, such as statea or OUTA, also correspond to columns of the or-plane.

The o group of variables correspond to the terms of the PLA. For each state there is an o variable that

is turned on when the state is enabled, and the proper input is seen. For example, line 1 of Fig. 3 says oMt2

is on whenever state 2 is enabled (eat2 is on) and noin is seen on the input (detected by both wires inO

and inl being off). Line 9 says that ostl4 is turned on when input noacka is seen and state 14 is enabled

(rcprcsentcd by the coded enabler bits being 100).

The only difference between a PLA structure and the organization of the variables in Fig. 3 is that the

statea, stateb and atat-c variables do not fit into the scheme. Rather, we can view them as fed back from the

or-plane, where they are generated, to the and-plane, where they are used, with no delay due to clocking.

Thus, Fig. 3 can be used almost directly as input to a PLA generator that permits unclocked signals as an

option.
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IV. Evaluation of Results

It is difficult to compare the logic of Fig. 3 with the "beat possible" logical description of an equivalent

circuit. It appears that, when the ability of the Lgen compiler to eliminate common subexpressions and

perform other optimizations is taken into account, the resulting logic will be very clo.ic to that found in the

hand designed PLA described below. Thus, we are optim istic that our automatic synthesis method behaves.

very well when amount of logic generated is the criterion used.

We can obtain a more concrete estimate of the quality of the circuit designed if we view it as a PLA

specification and compare it with a PLA designed carefully by hand. In our hand design, we used three

feedback wires. Two were used to binary code the "state," i.e., whether wc were in the start condition, or

in what we have called states a, b, and c. The third feedback wire indicated whether we were waiting for an

acknowlegement or had received the acknowledgement and were waiting for the next input. Terms based on

this encoding were written down and optimized using the gry PLA optimizer [Ill. The resulting PLA had:

1. 32 terms.

2. 17 columns in the and-plane, representing an initializing signal, the three feedback wires, and the five

input wires (inO, 1', acka, ackb, and ackc), each of which except the initializer requires inversion.

3. 7 columns in the or-plane, representing the three feedback wires and four outputs (ERROR, OUTA,

OUTB, and OUTC).

The resulting area is 32 * (17 + 7) = 768.

In comparison, the PLA constructed directly from Fig. 3 requires the following:

1. 30 terms (the o variables plus one term to carry the initial signal to the or-plane).t

2. 27 columns in the and-plane, consisting of

a) 10 columns for the inputs and their complements.

b) 7 columns for the private state enablers; these do not have to be inverted.

c) 3 columns for statea, stateb, and atatec; these also do not require inversion.

d) 6 columns for the three coded enablers, which do require inversion.

e) 1 column for the initial signal.

3. 17 columns in the or-plane, consisting of four output signals and 13 feedback wires.

The resulting size is 30 * (27 + 17) = 1320. This figure is 72% greater than the hand-designed one. The

overhead of the PLA borders will tend to reduce this figure somewhat, as will the fact that clocking is not

needed on six of the columns of the machine-generated PLA. But the fact that space is required for 13

t It 'is not uinustal for PLA'a generatcd from regular expresions to have rewer terms thatn hand-dcsigced ones, because the
former PIA's tLend to use one-hot codes (private enablers) for states, and that sort of code costs colurns.', but may save terms.

11



line X151
symbol InO(xljj .x[21)

Inl(x[21 -xiii)
badln(x[IJ x121)
ack(xJ31)
statcla(xI4I X(1))
st~atecib(x[41 -xI~i)
st~atelc(-x4) X(3j)
st~art(.x(41 .X151)
noin(-xtJj -x(21)
noack(.-X(sj)

output OUTA
OUTB
OUTC
stateox
stateolb
stateoc
ERROR

subexp inomein=InO + Ini + badin
subexp waitln=noin + badin
subexp allbutOl-mack + badin

start. waltin*(
allbutol ERROR +
1nO stateox +
Inl statcob

statela noack* OUTA(
sonicin ERROR +
ack waltinx* (

allbut~i ERROR +
InO stat~eob +
In stateoc

stateib noack' UT

uomcein ERROR +
ack waitln* (

alibut~l ERROR +
mno stateot +
In 1 stateos

stateic noack* OUTO
someln ERROR +
ack waitln* (

nIlbutOl ERROR +
InO statcos +
In 1 stateob

Fig. 4. Revised input to rcgular expression compiler.
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feedback wires for the machline-generated PLA will serve to increase the ratio.

V. Correction of Errors

One important advantage of the regular expression approach to design, as with high-level descriptions in

general, is that modifications are easier to make, and make reliably, than with ad-hoc designs.

Example 4: It turns out that our design of Fig. 1 is not the simplest that meets the specifications of (AUY].

Rather, since the channel is assumed never to make a mutation error, only to lose signals, there is no need

to distinguish between the three acknowledgements; whenever we receive an acknowledgement, we know it

was actually sent by the receiver, and we know that if the receiver is not broken, then it was sent in response

to the receipt of the correct signal.

Thus, we should modify Fig. 1 in the following two ways.

1. acka, ackb, and ackc should be identified as the signal ack; similarly, their complements, noacka, etc.,

are identified as noack.

2. While waiting for an acknowledgement, there are no "wrong acknowledgements" to receive, so terms

like

(aekb + ackc + somein) ERROR

should be replaced by

aomein ERROR

The resulting revision is shown in Fig. 4.

V. Conclusions

Regular expressions, in conjunction with conventional state machine definitions of processes, is a promis-

ing way to design circuits at a very high level. The use of optimizing logic compilers to do the actual

implementation may be superior to PLA implementation of regular expressions, but the evidence of the case

described in this paper, and other cases we have analyzed by hand, is that evenJ PLA iinplcmnentation of

regular expressions comes within a factor of two of the area uscd by ha'd-dcsigiwd l'lA's. Further, the

problem of coding nondeteriniiiistic states is not yet fully resolved, and there is hope that better PLA and/or

logic implementations of regular expressions will be developed in the future.
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ICTIM':
A Unified System for Functional Tenting

... ... and Simulation of DigitLal ICs

of. A. Neuakirk.
R. Raflhmuz.

a 1). , Boyle
Inlormation Systems Laboratory

Stanford University
Stanford CA 94305

Abstract The IlCTEST System
ICTEST is an algorithmic language for The idea behind the system structure (Fig.

describing functional tests of digital integrated 1) is to unify testing and simulation. The
circuits. The test stimulus and response designer writes one test description that can
specification is high-level, with the ICTEST sys- be compiled for any of the functional simula-
ter handling the translation into a test vector. tors and testers in the system.. Currently,
The ICTEST system unifies tcsting and simula- tests. target to either of 2 simulators or 3 tes-
tion: the same test program may be compiled ters (thh esim and tsim swvitch simulators [2]),
to run against any of the 2 simulators and 3 2 bench-top testers developed locally, and a
testers in the system. The ICTEST system has Tektronix S-3260 system).
been operational for over 13J years, has been
used by over 80 Stanford student 'and staff The heart of the system is ICTEST itself. It
designers, and has proved to be an effective provides a uniform front-end languagd for
te ' for functional testing in a fast-turnaround specif'lng stimulus and response, and the
e..Aronment, where cutting testing time and compiler and runtime system provide inter-
cost. is critical, faces to each target. All of the targets areavailable on-line, with errors and results

returned immediately in a standard format.
The user is thereby insulated from knowing the
details of each target.

Introduction An important benefit of this structurc is
that the same test is used to exercise both the

Since the fall of 1979, when introductory simulation and the fabricated IC. The process
LSI design classes based on [I] were first of debugging the Lest program against the
offercdt at Stanford, there has been an explo- simulator contributes to design verification,
sive growth in [SI design activity, both in since both the stimulus and response are
classes and for research purposes. We realized specified in the test program. Many design
at the outset that a convenient functional-test errors that cause differences between
system would be required if a substantial specifications and circuit behavior will show up
number of the resulting chips were goingt•b be at this stage. Test integration is simplifled
tested - brcadboarding individual test fixtures- because the test program has beenr validitxed.
would be a daunting task. We dcveloped the so errors encountered during testing are typi-
ICTEST system in response, and It has since cally the result of fabrication defects.
seen heavy use by the Stanford community, An alternative approach to generating the

prospective tester responses would be to run

-is work was supported by DoD ARIVA under contracts MDA-903-79-C-0600 -

A .d MDA-903-WG-0432-
traught by Drs. Newkirk and Mathews.
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beginning 30N/2 clock cycles latcr. The pro-
duct is scaled so that the nurncrical rcsult is:

ITS' Z = XOY.2-2a(/I2,)

Additionally, the multiplier is pipelincd. As
soon as the input of one pair of opcrands is

Interface complete, the next pair may be applied, even
though the first product has not yet emerged.

E( MINIMAL MEDIUM TEKSi TierTcser l S -3260

Yt, / t ./~t/,.
M~ask data Packaged chips Wafers V1.Nw~JTP~Er~ia.U

Figure 1. The ICTEST system. ICTEST it- Figure 2. Serial multiplier

self, the interface programs, and the
esim and tsim switch-level simulators
run on a VAX-i 1/780. The VAX communi- A representative ICTEST program for the
cates with the testers over serial links. multiplier appears in Fig. 3. The bond state-
The MINIMAL tester can test 40-pin dev- ment simply specifies the pinout of the part.
ices at a maximum of 1000 drive or The port declarations specify the clocking and
sense operations per second; the .. DI- formatting associated with each logical input
UM tester, 80 pins at 100,000 opera- or output. For example:
tions per second; the TEK tester, 64 input X serial lb N valid phil;
pins at 5,000,000 operations, per
•econd, all pins simultaneously. indicates that X accepts N-bit numbers seri-

the stimulus vector against the simulator and ally, least-significant-bit first. Each bit must
to use the simulator output as the expected be valid around the fWlling edge of the p, clock.
response for testing. However, this approach The procedure muztO) tests a single pro-
fails to validate that the simulated output is duct. The driving (=) and sensing (=?) opera-
carrect. It is not nearly as comprehensive as tions on the ports are self-explanatory; note
requiring that 3 different descriptions of the that ICTEST, not the user, is responsible for for-
design's behavior - the ICTEST response matting the operands and the product
specification, the simulation result, and the correctly. The brackets "[[" and -]]" indicate
fabricated part's output - coincide exactly. that all of the enclosed operations are to start
The lC ST Language concurrently, e.g., the operand values are

driven out, starting on the same clock cycle.ICIEST is an embedding of testing features The notation "(3,V/Z)::" indicates that the pro-in C [3]. (C is an Algol-like language, similar to duct should be sensed beginning 30N/2 clock
PASCAL.) These features divide into three major cycles. later.
classes: port declarations, specifying ,the
Inputs and outputs of the design; test state- The main program tst 0 requests two
rnents, for operating on ports; and control con- sequential (24' and 4J') multiy tests, 114
structs, for spcciylfng concurrency and pipe- and 7 7. The pack keyword instrucs-ICTES'rto ......
lining. The full power of C is available for pack the two tests together as tightly as possi-
describing tests algorithmnically. To elaborate ble without causing. collisions on the ports.
these points, we shall present an example. Without packing, the two tests would Lakeh pNi2 + N clock cycles each; with packing, the

Consider a serial, 2's-complement multi- tests are pipelined, and the second tcst-bcgýn-
plier [4], as shown in Fig. 2. The multiplier N cycles after the first, for a total o6f
ac--pts two N-bit operands, Icast-signiflicant 3ON/ 2+ VN cycles.
bi, .rst. and (bccause or the recoding and
computation used) produces the product

,4



grdef Sill /0 if thvis %imui•,iion 1/ Rclated lDevclopmcnLs#itsclude rntlL bond.sirn
#ieluse -bc icTh Isi' system is a unique, practical

/0 oW., ut're testing actual chip I/ synthcsis of functional tcsLing ideas. Unlike
bond pkg 14 sockCt 14 ATLAS [5], it is intcrided expressly for functionalS/4 chili and la.e.lr socket

/*both hhave 14 pins */ testing of digital ICs; ATLAS is extremely clumsy
b both t 1 pi n for this purpose. [6] is concerned only With

= bond porix to Pin numbers "/ high-level simulation. [7] and [8] contain

Y=2. languages that are probably suitable for a
LSBIN=3; unified test/simulation system, although nei-
Z=G; ther drives a simulator. Neither language is as
LSBOUT=5r
Mainclock=8,9; high-level as ICTEST, however, in formatting

capabilities or concurrency spccification.
Similarly, ANGEL [9] lacks the ability to

fdefine N 6 /' precision V describe serial input/output and pipolizrid or

/* port declaration'l follow'*/ concurrent activity, ANGEL can generate tests
input X serial lsb N valid phil: for multiple targets, but testing is not on-linc
Input Y serial isb N valid phil; ad errors are not referericed to the source
Input LSBIN serial Isb N valid pbil; program.
output Z serial Isb N valid phi2;
output LSIHOUT scrial Isb N valid phi2; Languages provided by commercial testclock Mainclock;
/* test procedures . manufacturers (e.g., see [10]) are both lower
testo level and much more complex, in part because

i they are more general-purpose than ICTEST;
Mainelock pack[[ mulL3,4): they consequently demand considerable exper-

mult(7,7); tise to'use. Front-end macro languages ease
II the situation somewhat, but tests remain

laborious to construct.
mult (ab)
Int a~b: Practical Experience with ICTEST

li/'start concurrent context / Researchers and students in classes at
LSBIN = 1 Stanford have used ICTEST since February o0
X a;
Y b: 1981. Since then, over 80 users have tested

3*N/2):: LSBOUT =? 1; about as many designs using the ICTEST sys-
3*N/2):: Z =?

floor (a*b*exp(2, (-2(N/2-1)))); tern. The principal targets have been the esim
]] simulator and the MEDIUM tester. The idea of

using the simulator target for debugging test
programs has worked very well.

e3. A small test 'of the seria IAn informal survey of ICTEST users reveals
Figureltie that some users prefer an interpretive s:mula-
multiplier tor interface for debugging their design: a

major objection to ICTEST is its comprlntion
time. However, users with designs well
matched to ICTEST capabilities - e.g., pipelined

The example shows how the features of architectures, circuits with serial Inputs or
ICTEST contribute to a concise and easily outputs, circuits performing mathematical
understood description of a test. An impdrtant functions, or circuits that perform concurrent
final step is to relate detected er-zors back to functions - uniformly prefer ICTEST. 'Thc
the test description. The error display pro- -behavio of such chips is very diflicult to
duced by ICTEST includes the port name, the describe without the facilities that ICTWST pro-
expected and actual values, and the line video.
number in thc test program source wheie the Some circuits have been tested with the
sonme operation was requested. This informa- Tektronix S-3260 tester. This task would hvwo
tlion is sufricient for the user to Isolate the been completely unmanageable if werbtt--nQt
source of the problem by referringnt tohe for ICT=ST. Student designers were able to Lest
,i" "5' source program, without having to their circuits at speed without learning any of

s..A4yzc the actual test vector, the details of the S-3200 or its programs.

S



Corncl usion
The IC1WS' system is a practical. effective

tool for functionally simulating and testing
digital ICs. Such perennial problems as serial
'. "1, concurrency, and pipelining are
audrcsscd by language fcaturcs. Unifying
simulation and testing simplifics debugging of
test programs and permits validated test
suites to be developed before the design is
sent for fabrication.

The ICTEST system has been operational for
over iX years and has been used by many stu-
dent and stafT designers. Experience has
shown that ICTEST is efTective for functional
testing in a fast-turnaround environment.
where testing must be easily accessible to a
wide range oi designers.
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Dumbo, A Sc hem atic -to- Layout Compiler

Wayne Wolf, John Newkirk, Robert Mathews and Robert Dutton
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Abstract

Thllis paper describes a tcehniquc for transhiting. logic circuoit descriptions in to layoutiS a nd a programn, IXl Iiiibo,
to demnonstrate thc technique. Thle technique allows tile designer to transform any digiail circuit into anl
arbitrary layout, The dcsigner describes tilec circuit inl termis of logical primitives to detcrmnine tile :'k-nct ion
and phiysical primnitivcs to describe tile forml of' the cell'i layout. lDumrbo synthesizes at placenicnt air.J' wiring

for the componctnts. generating a stick diagramn that canl be compacted into at layout. Tihe comipiler chioose s
defautlt physical structures if none arc specificd by thc (lesigner: thiis allows the designer to vary t~effort

expended on a cell according to its importance. Implementation of lDumbo has fo.tiscd or, nN OS
technology. Experimiental results show that tie resulting system grives good reSults 1Or t I.r~ge c!ias, of cells
with much less effort on tie designer's part than required for traditional design techniques.

Introduction

Thei advantages of at VI.SI decsign miethodology that emphasizes at -wtruured approachi to both th., logical

and phiysical design [11 are clear. fIn ordcr to make suich anl approach fcasiblo for large chiips. we nv.:st allow

the designers to push detail onto subordinates, preferably comiputers. so that they can concer.:rate on

problems critical to the design. Thiis piper descrilbes at designer's assistant. l')uiiib~o, thlat comlpiles cicisand

abstract physical structures into layouts.

Wc conjectured that it would be possible to compile stick dhialzranis from simlple deoscrii'tions bee.mse not

all cells are equally hard to de~signl. Manly cells inl a chip are nlot w e% aviea-critical anld somel, not at a". Tlhcse
cell ted tobe tragtldorward applications of Common 1)11 sicall struicturest mlmn oia ~~ins

Abstactonsof hesestrctues an etused to describe thie dlesired cell, letting theQ compiletr %%orry alx'ut thecir

details.

To test this hy)pothecsis we boilt a cell compiler. I )(uinbo. Our- iml)pclementatioll % orks %% ith n NIOS Jircuit's,

litt tie tcechniques used are not restricted to th.at technology". I )umbilo takes a.; inlput .1 coimecrýivity 1:,t o' (lhe

circtuit anld I description oif its exteialu.1 connlect ionls. It theni soh~es a placemlenit .111d touting pi o'ci ii to

U6 imac~~rcIh %as N1i j14,ted 6V ARt) rcmtrxw tAAG'1).SI K *O1tt, arni h1 IDAIWA, cot'oiaci NtIDA.11O7.) C P-S
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* Syntheisize a1 planar topology (topography) rcor the cell and wires it. Dumbo's output is a stick diao-ram that

can beC turned into a layout by a sticks comjpaclor; Figure I shows a cornpilcd stick diagram and its cumpictcd

layoutL

Thec compilation proecss is extremnely flexiblc: irphysical structurcs arc not given ror parts or the circuit the

compiler will uisc simple structures as dcrfaulls. it' the result is inadequate, the designer can inip,-o)c the

compiled cellias necessary by adding structural dectail to the input. In this way the designer can rn::tch thec

effort in designing thc ccll to diec ell's importance in thc overall design.

A stick diagram compiler is a logical next step given die existence of sticks compactors. and the compaction~

problem is wcll understood. Some typical sticks compactors are SI INI [2] and I -TOSS [3), %% hich arc iharinzý

compactors, and CAIIIAG F [4] and Lava [5), whichi are critical patb compactors. L~ava woas used Qs -hc back

end compactor in this work.

T'hc topography synthecsis problem has attracted much attention in the past scveral %ears. Rc:1wor"-

includes single-layer block layout 16], autom011atic generation of'schematic artwork [7] [8],edmciral~~
layout, including Weinbergcr's work 191 110] 111], and the ininiiattire gate array cells produced by SI AP [12].

Ifhe next step inl automatic layoumt synthesis is full topography synthesis, which is tho sjedOf Ll-hS. paper.

To describe our soIlutionl, weC rl'st enumera1-.te the goals for I )ombo. We th1101 describe theI'riW,<:~

design cells and give the results orquality mecasurem~ents onl Iumbo-designed cells.

Goals

Given~ our emphasis onl sitructural plus logical decscription of cells. we decided that those %rN'::s~er ý

necesary for a practical ccll design system:

1.1110i programl should h~e able to work withi arbitrary di-ital loigic circuits, including p~i~ta:ýr
designs. (W\e do not insist that parasitic circuit elementIls- -cap1acitan lce, resistmc,mnc-+O re'
Coll I rol lable.)

2. Cells shouild not Ic )eorced ill(to a limmited set of topog'raphieis. '[hle programl shiould be aNe -0
symuthesi /C arbitr-ary Ia)yotmcS.

3. The program shouild design ain electrically correct layout from anl absolutie mni inimuin of
in forma1.tionl.

4. The pro~i~rimn shouild he coot mollable1 and predicutalle: 11hC algorithluns Should Ke .0,1 to '
in formlI'llionl inl addition ito the minimal deCscriptionl. and tIme deigne'lr Shoulid 1,e ablle it) .1d
in fom mld ionl and correctly irckdict lit!e reCSult.

S. I-lixution timle shiould beý no niore than ~a rowv ('P1 mm mintes. Tlhis restriction limitý itlhe extent of'
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thc program's scarch. Wel will trade a slightly miore detailed input dlescription ror comlputation
Onle I1 order to achicvc areactfficicnt results.

The Compilation Process

I'li sclicmatic-to-layout process occurs inl two steps: first IDumbo producesa stick diagram; thcul the stick

diagramn is translated into a layout by a sticks cuird.-:ctor. lDumbo itself is implemented as a pipeline of five

programrs (sce F~igure 2). Patch program adds detail to the description until a unique stick diagrami resuills.

ulc state ora simple ccli at variouIs SUagcs inl the pilpclinC is Shown1 inl Figure 3.

logic -1'Placer -POrienter H-pExpanderL-P Wirer Router sticks

Figure 2: Thei Compilation Plipeline

Biricfly, thc programis and their functions are: the placer. which establislics the relative positions of gates,

* transistors and external pinls; the orienter, which gives orientation and mirroring to components requiring

orientation;, the expander, which translates functional block-;, such as invorters, in to transistor circuits thint

implement thec functions, the wirecr, \% hich breaks ncLs into trecs of pair\%ise connections or br.inchcs: anld thie

router, which defines (lic precise path that each branch will take.

- I-

1111d Olicniaiion and II *iing

Figtire 3: Pal-rtial D csignis of a Cell

Mhe pipeline canl lie partitioned rougly"1) into thie S.11110 fI' tictiolml I'locks as the. typicaul Ch111n nel votluter:



S

placement or componllents (placer. orienter and expander): wiring trec generation or loose rouliing (wirer); and

S final routing (routcr), While this analogy is uscful, it is important to rememiber that (he channel routing and

leaf cell problems, and the methods used to solve tiem, arc very different. The channel routing problem

works with components (blocks) that arc very much larger than the wires connecting them. Ill the leaf cell

synthesis problem, on tdie other hand, components and wires are comparable in size.

The Input Description

The input to I)umbo has two sections: an electrical description of the circuit, and structural information

suggesting the desired layout. The level of dctail in tile clectrical description is fixed. In contrast, the amount

of structural information given depends on the degree to which the designer wants to control the form of the

output. It is by varying the size and content of the structural description lhat the designer matches the cell to

the requirements.

Electrical description

The electrical description lists tile components in the circuit and the connections among these components.

Each electrical node (nect) is described by a list of the component pins connected to the net. A component c31n

be an external pin, a transistor or a comnpotnd component made up of several transistors. Compound

* components are used to describe common functional blocks. Figure 4 shmws two compound components. an

inverting superbt ffer and a multiplexer.

L ! ........... .. 
-- '

Figurl ,: ('olllpotI d col panellts
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Structural Description

'libe iininium structural in formation required is a description of the external connections inlto the cell.

Eahch pin is placed on onec or four ccll cdgcs--north. south, cast or wNCSt-and dhc pins on each edge arc pairthilly
ordered. TIic pin ordering isi required because it dcfnceS thc cills communication and hlcps dcfinc the cell

structtrc; it is a parild ordering so that the placement process canl help dcfinc thce commuitnication plan.

'T'li designer can optionally specify additional structural information about both nets andl componlents.

Anise Structures specify the formn that thc layout is to take; thle cornpilcr fills in the details.

1tecr arc two wiring structurcs the spanning tree and the track, lximplcs of flhesc prirnitk' cs are shown in

J-L

Spannuing Tree Tack

Figure 5: W\i ring structures

If tlie pinus onl the net beiNg wi rd are conidered as nodmes on a not, dihen the% spain in i tro is a t M~a facs

that cli reetly connect all the nodes. Trracks die in chat con ne ios can also be =do~! hmi l rec Ough

internwdhlte node that are added to the problem. These in cermed late nwods ar icRlughi I col Iins u ain di te

Wres between themn tfrin thle spine or dhe track. Spm s coo nect the pow t on thw spine 10 he cuq~nu': it phi

that are to he connected. Tracks are nodeled abfcr the lon sets of control lines corin muif usedok in ha:. otii.

A tiet canl be inupliuinened as at single N iring" structurle. oi it kciii be, COMi) osed or SO~ ci.'il ',t riicck:lC e each

wiring at subset of'the pins onl the net. F or instance, a net ii ay be wired as two separa cc tracks corn iietid by a

spannling treCe. (liste designler Canl build arbitraory structures, Imr a1 net fromt Colibiibtnaions of :e bSic

wilring structrs.

Compouand coniponents aie used to suplply Stiucturaul in ibiinaition, in addition to their r,1le ill (he elect'likiclI

descaipt ion. I net ionl.1 tin its uisually have one or at ro best layouts. '111C beqt lal)out t alo nc .1 0*1%o 111.1) \ary
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* With 111C applicatlIonl, b~ut geucrall y a l~irtictil.r layout for t fu nction is used many timiies in % design, The

designer choome a topography ror afunction by specifying at temiplatc to hc used. Filch teiiplifte hil a

dirTheren placement. or thce internals and ii different set or p~rcwircd connec~tions, Tcemplates supply

litfornitiaton oil the relative placement or ciecncits of thc function and onl device sizing; tile internal electrical

connections can be maidc by thc template designer or by thc wiring program in) anly Combination. Figure

6 showvstwo templates for an in vertor thut di ffer in tile placemenilt of their inlternal transistors.

Fligu rc6: Coinponcnt lmiplates

lThe fill l 111th11d of Strutldu rail SpQcifiThat ionl is to give implemntcntation hints to (lie programls in thc pipel Inc.. T1C hintis nllecllnnkim is disculssed ill the next Section.

Algorithm Summary

WeC otm. disuIss thie algorithms uised ito implement each phase of (lie compiler. The phases will take as

illptll, UI1 addition to thw in formation descrii'ed above, hi nts tha11 spcify it pallt of thie Solut ion. Tho (111nal

solution \Nill be ill genleral C11 hinged by thie existence of' the SOtitlt Sinsed Supp~llied byý thle hitF~or instanc.1C

thle \01, \\n ih~'~ill talke ats a1 hlint a branlch to 1he inculued inl m110 spannlinlý tree of' a nect: thek existence of thlis

first branch mo\ be cnou~fl ito produec a diinff.rmit span ii INCre. I Hill is llo\% thle dcsknrel finer control of the

cell desipn than11 do structur al Cefenients: a hlint is it rougoh eq1 i' m1en I to it bloc k of aemii lnuaecode

inscrted into a it~ Ileldl l haqwomage progý,ram. W\hile hints .1V no0t in tenlded tor1 exte~i\ e nýO. IlIQ areV kiSefll

and okadd to thie controllaibility of (lhe Compiler. FAIch ak1or-ithnmi Sumlitmamy. Ibel% describes the hlimt; that thle

algor-ithmitl will recog ll/Ce.

Placer

The placer produces Nv o total orde mi ngS of, thle tronsistors. logic dklem ents amid ex ten-1. m pins inl the Cell. one

inl x anid onle inl yThe alg'orlithimi tised is a utlodiflod 1`6mni1 of the0 I~ce-directed pI1.tckcmmmnt 11ittliod of Qulinn

* anld t11m cur 1131. , Th are -ietdm model usies Spri mis to gieplaceli ucut. I or. e.1ch net a coin plete !"r.m111 of

Npii us is buit miis tidt e~ cry padir ol'P i s oil thle net is; connlected bý a1 springe. TIhe S% sic, mm is then ula rihd to

find tile~ mmilii ii it ellerty State, ti udem thle rcsim ic Iionl tint1 externaml pillis a-re :11mlo ed to nmovc ill onlyv one



dimension along the cell edge. '111e ordering orcomrponents in the stable stitc is takkci as the placement.

Hints take dte form of added springs. The user specifics a pair of componcrits that are to be attached by a

spring and the stiffness of the attached spring. Figure 7 shows how uscr-dcfincd springs may modil'y the

placement. The original placement put lie topmost transistor to the left of both tracks connected to its source

and drain. To move it between the tracks the designer stiffened the springs betwecn the source aind drain and

the two tracks.

Before After

Figure 7: Placenient Hints

Orienter

The orienter uses a torquc-directed algorithm to conlpute the oriellationl Ofcach cot•i'rntlt. C ,,id.r the

component to be oriented as a pivot point around which rotate it set of 1arms, one Iii CacI com;',,nent pin:

theii a wire connecting to a pin exerts a torque on the arm that drives the component to pr'fcrred

orientation, as shown in IFigure S.

Figuir 8: 'rLrne-directOricinationl

The t(ilqtles eerted b't y ,ich connect ion to the t lconyo lw ill Ixi be -,1illin led to It 1,1 I thc loIcrli ý'.l it ,Ii te.

the colnlpolln llt tit its l:ilhilli lnlcry olieiltltion. Silice there Iiim)y iew Iw lo t.iteS, ollne A!h %%iirei

* crossed and one %%il Ili ncro•sed wilres. mliirro'inlg llmay also be Ieessli. NIirrorill i N dhlinc '• tha.t Ow



mliniiiitiif nuimber or wires cross over the component to get to (heir destination. The solutioni is actually
*calcutlltcdl by a sinliple Vo(ting algorithm. I A ich branch votes on thc orkienations it pr-ck~rs and (lie (Jriciitdtion

with) die most votes winls. If the orientation is not satisfactory thc user can override it will) a hint.

Expander

'he expander convcrts a description or Coiripoundl components and transistors into a de-scrip~tion

containing only transistors. 'Ilie temI)Iatc specified by the designer for each compound comp jonent is tiSed as

a macro for the transistor implemecntation of thc function; if no templatc is specified a defauilt tmrnplate is

used. The template contains in formation onl deviec sizes and onl placement of internal c' mipoflý:Its, N hicli

may be transistors or vias. It may also specify parts of thc internal wiring of the function. For thii stage thle

hint sulpplilcd by the designer is the template to be used for an instance of a coimpou nd component.

Wirer

The wirer translates each net into a set of -pairwise connections (branches) with assig-ncd Layers and

initrodtuces vias where they arc required, Two algorithmns are uised. onC for span ni ng tro-e and th-L other tor

tracks. 'llte spanning tree algorithm finds the minimutm spanning tree of a complete graph of bran>c.:1s, which

contains all connections onl the net. Branchecs to be incIluded in thle tree canl be suIpplied 1)V the dýIgni s

* hints, or by earlier staoes of the compiler, and they arc guaranteed to be inl the tree. \ias ire inscr,ýd into the

cell onl a branch-by-branch basis: a via is putl into every branich that connects pins onl differc-nt, layers.

Track nets arc implemented as a partictulair form of Steiner tree. The spine of the net ik built am . location

Vspecified inl thle placemen-lt. and spurs con nled the Steiner points oil tile Spinle to comlponeants onl 01" net. The

Steiner polints can be simple points or vias, depending onl the layers of' the spine and the C XlpiiPlciit

connection.

Router

The router tramulates thle branlches created b\, thie wiirintco aI Niaii hat tail stick d latirani one N. iose linle

Segments oll initersect atl right1 anlgles. The cell irouting problem is more general th1,ii th cIaIQ~ roulting

problem. Ili a channel rouiting. pioblein(the ch-ianiiels aie tonnied h\ thie Ib0ur eksot'the l'h'eks tli~i*. .re biiein

wii-ed, bot inl thle cell roultingp probileni(lie tranlsistors to bec connmected canl be L-onlsldecd [,ý point ~''em.so

thlere are io na.turlal %% iring Chalnnes.

Our areai muting, alrorithii. CaIlled I -routling, u~ses a1 \ery simple 1,611 ofl ntronc: iIb.:ee r

dralw i ý%ithl t~k l ile segnlie ots inl the fornI of either anl I. or. an1 in "cited I. (sec I igo ire 9).

If1 t llhe iolkei is consmltiucted Suich that no two pills sharel- a coni,1on01 celiltel rill then ni lobinchies %% Ill bie IeVA
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Figure 9: L-routing

unroutcd: all undesircd shorts can be removed by adding a jumper to a shorted branch that tcrnpuriril:.

changes the wire to a safe layer. 'llic routing problem is therefore to find a set of oriciiations for the I,,; that

minimizes the number of shorts. The optimal .-routing problem is NP-curnpletc. I lowever, typi-al ccll.k do

not require an exhaustive search to find a reasonable solution. A straightforward rip-up ,algorithm i, 'ulffici•,nt

to give good results. ilie algorithm also allows tlie designer to specify a routing for a branch as a hint.

Measurements

It would be dc.sirable to test l)umnbo's effectiveness by directly comparing compiled stick diigirais to

hand-drawn stick diagrams. I lowever, a stick diagram is only a means toward the desired end of a

* manu factu rablc layout, and there is no reasonable quality incasures for stick diagrams. Therefore. I)u mibos

performance must be measured through the filter of a sticks compactor. Figutre 10 shlos our method for

measuring the quality of compiled layouts.

minimal partial partial
description solution solution

lice ~Exp, nd Wf

> hand-drawn
sticks -L 1J

Figure 10: Comuparing h.mnd-draiwo stick diui.rmis to compiled stick%

First, a test cell is rendered als a stick diagr'l"m by hm1.id *111d comlutlucd, I'hcn am Ihi u l,,, dclilM i,,n ' the

cell is written and compiled into ., stick dJiagra.l, and tha.l stick di.qgra.11m is also o'olnli.mcwd. (:imalli the .lni ,s



of thc two layoutsarc comipar ed.

We call also mcastire thce layouit quality as ;I fuctio of tile work expecnded on tie hilput We do this by
inseirting a pairtially complete description of tic cell into thc middle of thle compilationi pipeline. F'or instance,

to incasurc (lic p)cnalty inicurred with aultoi'iatiC placemnent we prcpare a description of the( ca litht hias (tic

satnc placement and orientationi of thecComponents as does tile hand-drawn stick diaigram, and we start

compilation of ibis dcscription at dic expander. We have taken measurements starting at thirec stages oif dic

pipClhinc: starting at tilc placer, which gives a totally automlatic ccll', starting at tlie cxpandcr, which is

equivalent to generating a lay out from a schemaitic drawing (tAinig thle component placcmlent from tile

drawing); and starting at tilc router, which measures routing efficicincy."

The cells used for comiparison are taken from actual designs, Primary sources are Stanford chip dcsignl

projects and thle Stanford Cell Library 1141. Seveni cells have been tested to date; thecy range inl complexity

from six to 24 transistors and cover a variety of physical design styles.

Starting stage Area lItialty
(% larger thian hanid desi-in)

placer 120%
expander 60%

router 15%

T1*4ible 1: Average area penahty compared to hand-drawn sticks

Table 1 stimium rizes (lhe area penalties incu tied by Dmtilho, roil ided to 1,5 sign i flanlt difgits*. The \;riainco

of area penalty for designs iii trod iced at thie router is SinaI I. Tlhe \aitia nce for desirns in ill Md need at LtIM'

stages is larger. Area penalty' is not dliiectly reclated to f1inal1 cell size, cell aspect ratio or nunibei of

Comlponents. Th'le area penllty' for allitoll a:t ica-My placed cells is ca-used by the force-direýCtedl pl.lacemCiei

algor-ithmIIs lack of Concern) with tile pl.1lanaritY of %%i rinig nees. for-cing thec rotiter to add jii ti),prs to (le ccll.

th'le miimi 11 t enlergy p)LaccienII01 is inl general not the p)LaCVenwnt that gives thie l'etin tei'secti ng wirei'.. I le

wviier adds area0. to a c0ll)by clioosii ng a bad bcat ion for a via;, sinace thle \ý irerl does nlot searich for tile 11st I'l,IL~v

to add at via it ma .1 cross two branlchies Oici hen ned not 11.1\0 eOLeti ired. (CroS'Sed bra nelies inc.'s 1110e thecl. iiCC

that a in ii pe r is added do1 6111y, rout inig.) 1 he resumlts 1l61 arkea pienalty stalling 1ii frm thie exadrare Skce%O d b1ý

two \.Cry thli i cells that MiIi~'lred from poor. 61a jIaI-ceitteut. Since tlie han10drd.1il~ i cells .tt'e.) thiylb i anly

t h is.0 1 11 111i 1 i~ltt % l~rm l' l tild f u t- 1 1' ci ti .i1 'S tl sl c d l IIn cs %m III, I SI,,r lm g oI l p. 1,10 m i~ m t 0411"%C C lIll c % i tl i ( 4 1 11a c ol i '.0k ict u i h ol 1
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increisc in width incurs a large area penalty. If these cells arc thrown otit the av'cragc penalty for compilation

* ~starting at the expanider is about 30%. Our plans for imnprovemen~ts td thc rouiting and wiring algorithmns arc

outlined in tic conclusion,

Area penalty is iflost strongly related to die number of jumpcrs added during routing; the numnber or

jumnpers required depends onl other properties of thc ccll topography. A single jumper adds two 'bias to thec

component count, Tlhese extra components and tie required spacing around them incur a large pcenalty ill

cell arca. In order to understand this pcnalty we corrchutcd the area pcnalt) to the number of jumper vias

added during routing (see Figure 1I). *Fhc Percentage of compuncots added is calcul~oted zoi the number of

jumper vias added dhividedI by the ntumbcr of transistors and vias input to thc router.

400*

5010

Compoentsadde

Fiur 11 -ics ncmoet on essae vw

'I'le vi-en0.o in r i0s inaclo tc l*srtrlý25tils h n raoilc lloll"C1 tb

july lilp. Ill av p l.11. ~e.Cup,.i * .nt hek .It-ý 0ulp sA lllýIl d'ic"IOcc ' l

as(ie.1cao 11i. a, klll%ý a "1\ ýl w % rswilla~ 1 11) f% hlý p c (, % d.

relaionsip ci\\cn Figure coilci: ;Incrlk i complti.tonenlt cutle Thesu parei peiltyi
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Figure 12: Computation Time vs. Ccll Complexity

limited by thc inatrix operations pcrlbrmed; sparse matrix techniqucs are or no helcp since, the coefficienti

matrices arc oot sparse. 'llie speed of' the router is limited by thc method tiscd to sort brandies. The timec

complexity of routing could be reduccd to 0(ni log ii) from O(il) if more care wcrc takon inl implemientation,

The measurements wvere made on a VAX/] 1-780 with floating point accelcration running llorkdqc Unix"

'11c DUmnbo programs wcere m ritten inl Pascal and the compactor wats written in C.

Conclusion

Wec have presented inl this piper a method for compilation of leaf' cell lay out-; from simplc, ahstraCE

descriptions. Cell lkayouts share a set of physical primiti o s that Canl Ie suIccinctly deScribd aid roconsi ructed

using stiairolitforward techniques. Tlhese compilation tchniliques allow the0 designter to ury thle designl eftiolr

expended oin a cell. with a commenimsu rate payoff in output layout quality. I'hcse prolvirtics of the compileýr

enicourage the designer to concentrate on thie miost critical are~as of (lie design. so the, klosigner Can be morev

prfodulctive.

Our futuire work will concentrate on impyrovenienm s inl 1th0 compilat ionl techn:,10ý tieskud, notabl% Ohe

plalcenlent andI wil-ing alfgomith~iins. We expect to be a-ble to greatly\ enlhance the placcem %t ili hthe aIdditionl ot' a

illiprm~emlent phase that concentrates onl 1"ItXinli/ ing thle pImimnaity of'the '% iring. ~\\e mme also " irk inig on a

wiring al,,oritbnt that scmrclics for good locations for \iats. liese e manceiemi( iSshoul d Nitgnificantly% ill p o e

the qaiyfompldcells.

Urnk is a 14g.,kaauk of( IAIt I attoittiidi
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